《鱼明胶改性:综述》

  • 来源专题:食物与营养
  • 编译者: 殷小溪
  • 发布时间:2019-02-19
  • 明胶是最受欢迎的生物聚合物之一,广泛应用于食品、医药和化妆品行业。哺乳动物明胶占商业明胶的绝大部分,但由于社会文化和健康方面的考虑,多年来一直受到限制和质疑。鱼明胶由于其功能特性与哺乳动物明胶相似,被认为是哺乳动物明胶的优良替代品。但与哺乳动物明胶相比,鱼明胶的凝胶性和流变性较差,限制了其广泛的应用。本文综述了近年来用于改善鱼明胶凝胶特性的各种技术及其改性机理和应用。最后,简要讨论了鱼明胶的安全性和监管现状,以及改性鱼明胶的发展前景。为改善鱼明胶的凝胶性和流变性,人们提出了多种方法。不同改性方法的组合是克服鱼明胶缺点的一种新策略。但是,要更好地了解这种修饰的确切机理,扩大其在食品工业中的应用范围,还需要进一步的科学研究。

相关报告
  • 《研究综述:2021年5月14日》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2021-05-31
    • 欢迎收看2021年5月14日的《研究综述》,这是由布罗德研究所的科学家及其合作者发布的最新研究的重复快照。 病毒比较可以解析SARS-CoV-2的全部基因集 虽然SARS-CoV-2的基因组在大流行的早期就已被测序,但其基因含量迄今仍未得到确定。Irwin Jungreis, Rachel Sealfon (Flatiron研究所)和Epigenomics项目的副成员Manolis Kellis利用44株沙贝病毒的比较基因组学,确认了6个辅助蛋白,拒绝了几个候选基因,并发现了一个新的重叠的替代框架基因ORF3a。他们还利用他们的比较对2544个大流行病毒分离株的功能突变进行了排序,确定了异常快速或缓慢进化的基因(与它们的进化历史相比),以及可能导致变异之间传染性差异的标记突变。 耐药性的进化 抗生素耐药性是对公共卫生最紧迫的威胁之一,但研究人员对病原体如何进化耐药性的理解仍然有限。为了解决这一缺口,传染病和微生物组项目(IDMP)的联合主任马培军(音译)和同事们研究了肺炎克雷伯菌碳青霉烯耐药的进化,肺炎克雷伯菌是一种可以导致致命的多重耐药感染的细菌。他们确定了促进碳青霉烯类耐药性上升的多种遗传因素,并提出以更高的遗传粒度(不仅仅是物种识别和抗生素敏感性)定义感染病原体对诊断和治疗此类感染具有重要意义。 细菌酶使特定的抗菌活性成为可能 前药,即在体内代谢成为活性药物的化合物,如果其激活依赖于仅在其微生物目标中发现的酶的活性,则可作为抗菌药物使用。在ACS化学生物学,Kenton Hetrick, Miguel Aguilar Ramos (MIT),化学生物学和治疗科学项目的副成员Ron Raines报道,抗生素反式-3-(4-氯苯甲酰)丙烯酸的硫醚酯前药对耻垢分枝杆菌更有效,因为一种内源性酯酶使其对前药敏感。未来的工作可能利用一系列细菌酶开发窄谱抗生素,以帮助解决目前的抗菌素耐药性对公共卫生的威胁。 ibd相关微生物的炎症性不一致 炎症性肠病(IBD)患者的肠道微生物瘤胃球菌(Ruminococcus gnavus)水平经常升高。Matthew Henke(哈佛医学院),传染病和微生物组项目(IDMP)的高级副成员Jon Clardy和他的同事们利用患者的斑马鱼分离株来研究这种微生物在炎症中作用的分子机制。该研究小组发现了一种基因簇,一旦存在,就会引导一种厚厚的多糖保护胶囊的产生,将细胞完全覆盖。他们发现,与那些含有荚膜产生菌株的小鼠相比,缺少这类菌株的小鼠有更多的肠道炎症,这表明并非所有的斑马鱼菌株都具有炎症性。请阅读PNAS。 SOX2是食道鳞状细胞癌(ESCC)中染色体扩增的转录因子。Wu Zhong, Jin Zhou, Xiaoyang Zhang,前癌症项目助理成员Adam Bass(现在在哥伦比亚大学欧文医学中心)和他的同事开发了代表从正常食道到sox2诱导的鳞状细胞癌表型的工程鼠类器官,并绘制了Sox2结合以及从正常到癌症进化过程中的表观遗传和转录景观。致癌Sox2重新编程肿瘤细胞表观基因组,促进对RNA编辑酶ADAR1的依赖。这项工作指出了可以用新的治疗方法针对的弱点。
  • 《研究综述:2019年10月18日》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-10-31
    • 欢迎来到2019年10月18日的研究综述报告,这是Broad Institute的科学家及其合作者发表的近期研究的重复快照。 通过更大的遗传多样性改善生物学 GWAS数据集中的祖先多样性水平较低,可能会限制科学家对疾病生物学的了解,并加剧全球健康差异。斯坦利精神病学研究中心的黄海亮和他的同事在《细胞》杂志的一篇入门文章中,概述了研究方法上的陷阱以及对那些研究来自更多不同人群的数据的建议。这些考虑因素包括基因分型技术,数据质量控制标准,统计方法等等。作者还提供了各种全基因组序列数据来源的目录,并描述了需要改进分析方法的领域。在此新闻稿中,阅读更多来自弗吉尼亚联邦大学的新闻。 获得它的GIST 大多数胃肠道间质瘤(GIST,一种常见的胃肠道癌)可以用靶向激酶抑制剂治疗,但是大约有10%到20%的人缺乏必要的突变。在《自然》杂志上,威廉·弗拉瓦汉(William Flavahan),约坦·德勒(Yotam Drier),萨拉成员约翰·史东(Sarah Johnstone),表观基因组学计划主任布拉德利·伯恩斯坦(Bradley Bernstein)及其同事表明,其中一些肿瘤具有表观遗传学改变,这些改变打破了基因组中的结构障碍,从而使基因远离其他基因的增强子( “打开”开关)。分子错误激活了称为FGF4的致癌基因,并使肿瘤易受称为FGFR抑制剂的药物的影响,无论是单独使用还是与标准GIST治疗舒尼替尼一起使用。在马萨诸塞州综合医院的新闻稿中了解更多信息。 一两拳给肿瘤 弥漫性固有桥神经胶质瘤(DIPG)(一种无法治愈的小儿癌症)中的染色质调节发生改变。包括杰米·阿纳斯塔斯(Jamie Anastas)(波士顿儿童医院/ HMS),准成员Mariella Filbin和Yang Shi以及核心研究所成员和癌症计划主任Todd Golub在内的一个团队使用CRISPR筛选显示了抑制组蛋白脱乙酰基酶(HDAC)使细胞对脱甲基酶LSD1敏感。他们在《癌细胞》杂志上的报道显示,Corin是HDAC和LSD1的双重抑制剂,在体外和异种移植物中均能有效抑制DIPG的生长。它会引起转录变化,与患者的生存时间增加有关,这表明表观遗传学疗法可以帮助治疗这些肿瘤。 基因组的基因计数:仍在上升 解密人类基因组所面临的主要挑战是精确识别包含蛋白质编码序列的所有区域。由机器学习工具PhyloCSF比较多个物种的基因组以预测功能性,保守的蛋白质编码序列,由Irwin Jungreis,副成员Manolis Kellis和同事领导的小组报告了对人类蛋白质编码DNA的新见解,老鼠,鸡,苍蝇,蠕虫和蚊子的基因组。在他们的发现中,研究人员报告了70个以前未检测到的蛋白质编码基因,并揭示了118个GWAS变体以前被认为是非编码的,实际上是在改变蛋白质。阅读Genome Research中的完整故事。 现在正在筛选:基于图像的表型 科学家利用基因筛选扰动哺乳动物细胞中的基因,以了解这些基因的作用。汇集的屏幕采用相同的方法,可以按常规缩放以分析更多的遗传扰动,但与成像不兼容,因此无法同时对许多细胞特征进行高分辨率测量。大卫·费尔德曼(David Feldman),阿夫塔·辛格(Avtar Singh),核心研究所成员保罗·布莱尼(Paul Blainey)及其同事开发了一项新技术,该技术将大规模的混合遗传筛选与基于图像的表型结合起来,以研究基因如何影响复杂的细胞过程,并正在继续开发和应用该方法。通过与癌症计划,成像平台,克拉曼细胞天文台和斯坦利中心的合作。