《Nucleic Acids Res:发现两种较小的新型Cas9核酸酶,有望更容易地进行基因组编辑》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-12-14
  • 在一项新的研究中,来自俄罗斯科学院、俄罗斯国家研究中心分子遗传学研究所和斯科尔科沃科学技术研究院等研究机构的研究人员描述了两种新的紧凑的Cas9核酸酶,即CRISPR-Cas系统具有切割活性的组分,这将有可能扩大Cas9工具箱在基因组编辑中的应用。这两种Cas9核酸酶中的一种被证实可以在人类细胞中发挥作用,因而可用于生物医学应用。相关研究结果发表在2020年12月2日的Nucleic Acids Research期刊上,论文标题为“PpCas9 from Pasteurella pneumotropica — a compact Type II-C Cas9 ortholog active in human cells”。论文通讯作者为俄罗斯国家研究中心分子遗传学研究所的Konstantin Severinov博士。

    CRISPR-Cas是借用细菌的基因组编辑技术,它依赖于Cas核酸酶;这些酶在CRISPR RNA的引导下,可以降解目标基因序列---它们是“基因剪刀”中的刀片。在研究应用中,最受欢迎的Cas9核酸酶是酿脓链球菌(Streptococcus pyogenes)Cas9,即II-A型SpCas9。它的效率很高,而且相对简单,这是因为一个较大的蛋白既能结合crRNA,又能切割DNA;它还需要一个短的PAM序列---一串位于在靶位点两端的核苷酸,以便SpCas9用来定位和“读取”它。

    但是SpCas9是一个较大的蛋白,当人们想使用腺相关病毒(AAV)颗粒作为载体将这种“基因剪刀”递送到细胞中时,这就会产生问题。理想情况下,人们希望将编码这种Cas蛋白的基因和向导RNA(gRNA)序列都装入一种病毒颗粒中,而这种尺寸限制需要较短的Cas9种类。然而,那些较短的核酸酶往往需要更长、更复杂的PAM,因此科学家们面临着蛋白大小和靶标选择之间的权衡。

    在这篇论文中,最近通过斯科尔科沃科学技术研究院博士答辩的Iana Fedorova以及Severinov实验室研究员Aleksandra Vasileva及其同事们描述了两种新的小型Cas9核酸酶:一种来自Defluviimonas sp.20V17(一种生活在热液喷口的细菌),即DfCas9,另一种来自侵肺巴斯德菌(Pasteurella pneumotropica,一种在啮齿动物和其他哺乳动物中发现的常见细菌),即PpCas9。这两种核酸酶恰好对AAV载体来说足够小,并且具有相对较短的PAM,对于Cas9核酸酶来说,这是“两全其美”的选择。

    这两种新的Cas9核酸酶与II-C型CRISPR-Cas系统有关,与SpCas9相比,通常表现为更小的Cas9效应物。这两种核酸酶采用了类似于其他Cas9蛋白的保守的双叶结构,但也有独特的特点:它们缺乏几个插入子结构域,并且有一个较小的Wedge结构域(负责与单向导RNA支架相互作用的结构域,因而更加紧凑。

    Fedorova说,“事实上,II-C型Cas9效应物往往需要较长的PAM序列,但这只是基于迄今描述的有限数量的II-C型Cas9效应物的观察。例如,最近发现的来自耳葡萄球菌(Staphylococcus auricularis)的Cas9(SauriCas9),与PpCas9类似,需要短的PAM(5'-NNGG-3')。很可能很快就会发现更多需要短PAM的II-C型Cas9酶。这些具有不同PAM要求的小型Cas9蛋白扩大了真核和原核基因组中潜在的可编辑DNA靶点的数量。”

    体外研究和在细菌中的实验表明,这两种Cas9核酸酶能高效地切割DNA,而且PpCas9核酸酶在人体细胞中也很活跃。这些结果也发现它们与其他已被证明在真核细胞中起作用的Cas9核酸酶-- Nme1Cas9和Nme2Cas9---非常相似。虽然还需要开展更多的研究来确定这两种Cas9核酸酶的效率,但是这些研究人员认为它们可能为微生物工程和生物医学基因组编辑中使用的更传统的核酸酶提供了一种可行的替代物。

    Fedorova指出,对PpCas9脱靶编辑(非预期修饰)的初步研究表明,这种酶具有合理的特异性。但要证实PpCas9的特异性足以被视为一种基因组编辑工具,还需要使用更复杂的方法进行额外的研究。

    她补充道,“此外,看起来PpCas9在靶向细胞中的不同基因方面表现出选择性。这可能会减少PpCas9可能的基因组靶点的范围,这种偏好性是一个值得进一步研究的课题。”

  • 原文来源:https://www.skoltech.ru/en/2020/12/fun-size-cas9-nucleases-hold-promise-for-easier-genome-editing/;https://academic.oup.com/nar/article/48/21/12297/5957178;https://news.bioon.com/article/6781964.html
相关报告
  • 《科学家首次发现阻断CRISPR-Cas9基因组编辑的小分子抑制剂》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-05-13
    • 在一项新的研究中,来自美国布罗德研究所等研究机构的研究人员发现酿脓链球菌Cas9(SpCas9)的首批小分子抑制剂能够更精确地控制基于CRISPR-Cas9的基因组编辑。具体而言,他们通过开发一系列高通量生物化学分析方法和基于细胞的分析方法,筛选了许多小分子,以便鉴定出能够破坏SpCas9与DNA结合因而干扰它的DNA切割能力的化合物。这些首批小分子CRISPR-Cas9抑制剂很容易进入细胞,并且比之前发现的抗CRISPR蛋白小得多。这些新化合物可以对基于SpCas9的编辑技术进行可逆的和剂量依赖性的控制,包括它们在哺乳动物细胞中进行基因编辑、碱基编辑和表观遗传编辑的应用。相关研究结果发表在2019年5月2日的Cell期刊上,论文标题为“A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9”。 论文通讯作者、布罗德研究所的Amit Choudhary说道,“这些技术为快速鉴定和使用针对SpCas9和下一代CRISPR相关核酸酶的小分子抑制剂奠定了基础。靶向CRISPR相关核酸酶的小分子抑制剂具有广泛应用于基础研究、生物医学和国防研究以及生物技术应用的潜力。” 当前,SpCas9正在开发作为多种疾病(包括艾滋病、视力障碍、肌肉萎缩症和其他遗传性疾病)的基因治疗试剂。但是,这些治疗应用将极大地受益于对SpCas9活性的剂量和时间安排进行精确控制以减少脱靶效应。控制SpCas9活性的这些方面也可能使其他应用受益,比如对模型生物的DNA进行高效编辑来构建疾病模型和研究疾病,以及在基因工程蚊子中使用基因驱动来遏制疟疾和其他蚊子传播疾病。 对SpCas9的剂量和时间控制的需求已产生了对抗CRISPR分子的需求。尽管存在靶向SpCas9的抗CRISPR蛋白,但是它们是大分子,不易渗透到细胞中,起着不可逆的作用,可被蛋白酶分解,并且可能在体内存在引起不良免疫反应的风险。相反,小分子抑制剂在蛋白水解上是稳定的,可逆的,通常是非免疫原性的,并且能够通过被动扩散轻松地递送到细胞中。此外,它们可以低成本地大规模合成,具有很小的批间差异。 在这项新的研究中,Choudhary及其团队推出了一个强大,灵敏且可扩展的平台,用于快速、经济地鉴定和验证SpCas9的小分子抑制剂。鉴于SpCas9酶的特性,以高通量方式测量CRISPR-Cas9活性从而进行药物筛选一直是具有挑战性的。为此,Choudhary团队分别开发了针对SpCas9-DNA结合和SpCas9 DNA切割活性的高通量初级和二级测定方法。对于初级测定,他们使用一种称为荧光偏振的生物化学技术来监测SpCas9与含有PAM序列的经过荧光团标记的DNA片段之间的相互作用。在二级测定中,他们使用自动显微镜来测量在细胞中由SpCas9介导的对报告基因进行DNA切割后产生的荧光变化。 通过使用这些测定方法,这些研究人员首先筛选了多种类型小分子的代表成员,以确定其成员经常抑制SpCas9的小分子类型。他们鉴定出两种先导化合物,它们以剂量依赖性方式破坏了哺乳动物细胞中SpCas9结合DNA和抑制SpCas9介导的DNA切割的能力。鉴于这些小分子阻断这种酶结合DNA,因此它们还抑制SpCas9的催化活性受到破坏的编辑技术,包括用于转录激活的那些技术,而且在人血浆中是稳定的。 Choudhary说,“这些结果为对CRISPR-Cas9活性的精确化学控制奠定了基础,从而能够安全地使用这些技术。然而,这些分子还没有为人类应用做好准备,也没有在生物体内进行功效测试。” 在未来的研究中,这些研究人员计划鉴定这些抑制剂在SpCas9:gRNA复合物上的结合位点,研究它们的作用机制,并优化它们的功效。他们还将确定这些分子是否与哺乳动物细胞中的其他靶标相互作用,并评估它们对其他的CRISPR相关核酸酶的特异性。这项新研究的早期结果表明这些分子对它们的靶标极具特异性,这是因为它们对与SpCas9的亲缘关系较远的CRISPR相关酶Cas12a没有影响。
  • 《 再造基因组编辑系统》

    • 来源专题:转基因生物新品种培育
    • 编译者:Zhao
    • 发布时间:2018-01-09
    • 仅仅数年间,使用 CRISPR(规律成簇间隔短回文重复)/ Cas9 进行基因组编辑在科研上激起了巨浪,该技术使研究人员能够精确而方便地编辑特定的基因。然而,新技术也存在一些缺点,例如在错误的地点切割 DNA,甚至是随机地进行 DNA 编辑。 但是科学家们很快开始将 CRISPR 拉回了正确的轨道,如今创新性的分子特性使它更好地作用并能用于更多类型的细胞。CRISPR 应用的迅速出现意味着艾滋病、癌症、镰状细胞病等其他疾病的临床试验出现了端倪。 今天的 CRISPR 技术对于更多研究者来说也是一个尖端的工具,与其他基因调控方法相比,更适应于未来的医疗应用。“回到 RNA 干扰(RNAi)时代,感觉就像进入了超光速飞船。” 整合 DNA 技术公司的高级副总裁和首席科学官 Mark Behlke 说,该公司提供 RNAi 和 CRISPR 的试剂。“但现在 CRISPR 使它看起来像一个孩子的游戏,实在令人惊讶。” 相比于其他基因编辑方法,如 TALENs(类转录激活因子效应物核酸酶)和锌指核酸酶, CRISPR 更加快捷便宜,也更易于使用,从而快速地被许多领域的科学家所接受。例如,癌症研究人员将包含编码 CRISPR 向导 RNA(guide RNA)和 Cas9 (CRISPR 关联蛋白 9)的质粒 DNA 转入细胞系中,创造出对应不同研究的癌细胞系。 然而斯坦福大学医学院副教授,儿科医生 Matt Porteus 对于 CRISPR 起初有着不同的体验。他说,“每个人都表示 CRISPR 会帮助解决世界上的所有问题,但当我们试图将细胞中的 CRISPR DNA 质粒应用在我们认为重要的治疗中,如造血细胞系或其他原代人类细胞类型,该系统根本不起作用。” 因此,Proteus 实验室研制出的一种在人原代细胞中进行 CRISPR/Cas9 编辑的不同递呈方法, 完全不需要 DNA 质粒。 该方法的变化在于通过核糖核蛋白(RNPs)形式将 CRISPR/Cas9 试剂引入细胞。“研究人员将这些试剂(gRNA 和 Cas9 蛋白)组合起来,给它们 5 到 10 分钟的时间形成复合体,从而合成出 RNPs。” 赛默飞世尔公司合成生物学研发部高级主管 Jon Chesnut 说,“CRISPR RNPs 可通过脂质纳米粒子或电穿孔的方式传递到细胞中。” 虽然 RNP 试剂已被广泛使用,但近些年研究人员对它们的兴趣还停留在 CRISPR 方法的层面。“这是由于早期基于质粒的方法中有大量的 DNA 工具被广泛接受,大家还存在意识的盲区。” Dharmacon 公司(GE 医疗集团的子公司)高级产品经理 Louise Baskin 说。与质粒载体方法相比,无 DNA 的、基于 RNP 的 CRISPR 方法的好处在于没有意外 DNA 的插入,能够降低毒性,对目标效果更好,并且提高了特异性。 这些优点使得无 DNA 的 CRISPR 工具更适合于在治疗中应用。“对我们来说,在原代组织和原代细胞类型中的基因编辑能力是一个巨大的突破。” 加州大学旧金山分校(UCSF)细胞与分子药理学博士后 Judd Hultquist 说。 通过与 Kathrin Schumann(UCSF 医学院微生物学和免疫学博士后)合作,Hultquist 将 Dharmacon 公司 Edit-R 合成 gRNAs 的 RNPs 用在人原发性 T 细胞中,该细胞是艾滋病病毒的主要目标。现在他们正在开发一种基于 RNP 的平台,目标在于寻找能够提高 T 细胞对 HIV 感染抗性的遗传变化。 CRISPR 的核糖核蛋白的使用也彻底变革了模式动物系统(例如秀丽线虫)。对于秀丽线虫而言,CRISPR 是一个真正的游戏改变者。” 华盛顿大学医学研究所副教授 Brian Kraemer 说,他是 IDT 公司的无 DNA CRISPR 试剂的使用者。 将核糖核蛋白注入到线虫性腺区,可以进行生殖细胞的基因组编辑,随后可以分离出具有编辑表型的后代进行后续研究。Kraemer 的实验室利用线虫作为模式去识别蛋白质聚集疾病(如老年痴呆症和肌萎缩性侧索硬化症)的致病机制所需要的基因。 Kraemer 认为,新的 CRISPR 工具将引燃下一代线虫转基因模型,包括定制等位基因,依照实验的目的而改变基因编码蛋白,例如通过改变胞内转运蛋白的靶序列,可以使它定位到一个不同的细胞膜区域。 提高原代细胞(也包括其他细胞)CRISPR 的关键之一,是近期的增强试剂。IDT 公司开发了经过化学修饰的能够在胞内抵抗核酸酶降解的 gRNA。该公司还开发了两个短的 RNA 形式的 gRNAs(就像在原初细菌系统中),能够形成复合体,而不是单一的、更长的 gRNA。MilliporeSigma 公司也计划提供称为 “SygRNAs” 的两部合成 gRNAs。 牛津大学威廉邓恩爵士病理学院的基因组工程平台负责人 Joey Riepsaame,采用 IDT 公司的 Alt-R CRISPR/Cas9 RNP 系统来辅助进行基因编辑实验。Riepsaame 称赞 IDT 公司的两步合成 gRNAs,能够减少诱发不必要的免疫反应。“这对我来说是一个非常重要的因素,因为我的项目涉及到使用 CRISPR/Cas9 纠正免疫细胞中疾病诱发的突变。” 他说,“到目前为止,我们还没有在 CRISPR/Cas9 中遇到任何重大的挑战,并且能够靶向到每个感兴趣的区域。” 优化的 CRISPR 试剂,如 RNPs 也给研究人员提供新的机会。以 DNA 为基础的 CRISPR(甚至 Cas9 的信使 RNA)的一个问题,是在开始编辑前存在一个滞后阶段,这期间细胞机制会转录和 / 或翻译活性 CRISPR 试剂。例如,将基于 DNA 或 mRNA 的 CRISPR 试剂注射进胚胎中时,结果能够产生一种称为 “镶嵌体”,也就是具有超过一种的遗传信息的动物。“RNP 的方法能够降低镶嵌现象,因为它的试剂在引入的同时就被激活,在编辑后快速降解,同时对于降低脱靶效应也有好处。” IDT 公司的 Behlke 说。 其他的新工具,包括用于将 CRISPR 试剂更好的传递到细胞中的转染试剂。MTI-GlobalStem 公司新的 EditPro 干细胞转染试剂能够将 CRISPR 工具传递到细胞中,而他们的 EditPro 转染试剂能够传递进人类原代细胞以及细胞系。“新的 EditPro 转染试剂依照 mRNA 的量,具有广泛的可调节剂量。”MTI globalstem 公司科学总监 James Kehler 说 除了优化 CRISPR 试剂,研究人员也正在以新的、创造性的方式来使用 CRISPR/Cas9 系统。例如,去除 “剪刀” 功能的 Cas9 变成一种有效的分子靶向的工具,可以将附加效应分子靶向到基因组的特定区域。不同的效应分子,如激活子、抑制子或者修饰子也已经被研究。MilliporeSigma 公司的 dCas9-p300 激活子就是一个融合了 p300 组蛋白乙酰转移酶结构域的非切割版本的 Cas9。一经结合,该激活子能够使附近的组蛋白乙酰化,为增强和持续的基因表达打开了染色质。 尽管基于 RNP 的 CRISPR 技术在近期大获成功,在用于功能筛选时,基于质粒技术还是存在一席之地。为了鉴定引发疾病的基因,一些公司提供了基于慢病毒 CRISPR 的基因敲除文库。美国西北大学费因伯格医学院小儿神经外科副教授 Simone Treiger Sredni 近期利用赛默飞世尔科技公司的 LentiArray CRISPR 文库去筛选 160 种影响细胞增殖的激酶的突变。Sredni 研究主要集中在寻找与儿童非典型畸胎样 / 横纹肌样瘤(atypical teratoid/rhabdoid tumors ,AT/RTs) 的治疗方案,这是一种侵入性和致死类型的儿童脑瘤。 Sredni 在一些特定的激酶中筛选了一致的突变,能够减少 AT/RT 细胞系的细胞增殖。她说,“其中一种激酶的抑制剂能够与缺失基因产生同样的效应,使得肿瘤不再生长。” 她也观察了利用高通量的基因表达平台进行的筛选,“这个基因从此不起作用了,因为它的表达水平是非常低的。” 接下来,Sredni 将研究抑制剂在小鼠移植瘤中的效应。 MilliporeSigma 公司还提供了基于慢病毒的,用于全基因组筛选 CRISPR 工具。通过与惠康基金会桑格研究所合作,MilliporeSigma 最近还为人类和小鼠的基因组构建了阵列式的全基因组 CRISPR 文库的,提供的格式、传递方式和范围(即单基因、基因家族,或整个基因组)都很灵活。 安捷伦公司日前也发布了集合性 CRISPR 筛选指导库,包括通过慢病毒载体传递的 CRISPR 基因敲除文库,包括了人类和小鼠的基因组尺度。为了获取充分的灵活性,安捷伦还提供了前扩增和不扩增的用户定制文库。“我们的 CRISPR 集合库利用 CRISPR/Cas9 在整个基因组上进行敲除,在功能筛选中被广泛使用。”安捷伦公司分子和合成组诊断和基因组生物学全球营销总监 Caroline Tsou 说,“通常这种敲除用来确定参与的细胞反应的基因,如信号转导通路,或发现新基因的功能。”安捷伦还提供长达 230 个碱基对的定制化的寡核苷酸,能给研究者 “探索文库其他用途的自由。” 她说。 但有时当细胞在被迫表达细菌核酸酶时,状态都不是太好。Dharmacon 公司的 Edit-R 诱导慢病毒 Cas9 系统对于那些不愿意在稳定细胞系中长时间含有核酸酶的研究人员来说,是 “一个很好的妥协。” 巴斯金说。“诱导系统发挥了最好的一面,因为当准备使用向导 RNA 处理细胞时,他们可以开启核酸酶的表达,得到充分表达的 Cas9,随后在完成切割后再将它关闭。” 与此同时,各种各样的 CRISPR 试剂已经为了对抗疾病准备就绪,特别是使用无 DNA 的方法。比如,RNP 方法的快开、快关的特性非常适合治疗性应用,CRISPR 试剂可以定向切割随后迅速降解。 但是纠正基因缺陷并不像敲除基因那么容易,因为通常行使功能的基因也必须被引入到正确的位置上。位于斯坦福的 Porteus 实验室最近发表了概念验证的 CRISPR RNPs,用于靶向β- 球蛋白基因,该基因的突变导致镰状细胞病。他们发现 CRISPR 可以修正这种疾病患者的人类造血干细胞中的β- 珠蛋白基因缺陷。此外,在加州大学伯克利分校的一个实验室独立地完成了一个类似的 CRISPR 编辑β珠蛋白基因的结果,使用稍微不同的方法来进行基因修正。 综合起来,这些工作给即将进行的人体临床试验带来了福音。2016 年 6 月,美国国立卫生研究院在美国批准的第一个临床试验,将使用 CRISPR 编辑人类 T 细胞帮助改善癌症治疗,预计该实验要持续到 2017 年。 同时,Porteus 实验室正在着手将 CRISPR 编辑的细胞用在病人身上,他们期望能在 2018 年开始临床试验。他们可能首先针对镰状细胞病,其次是严重的联合免疫缺陷(SCID)。Porteus 实验室不仅希望利用 CRISPR 修正突变,同时能够给细胞增加新的特性,从而可以治疗疾病,“例如抗 HIV 的免疫系统,或创建能够传递蛋白质到脑部的细胞。” 他说。“在科学和医学的生态链中,我们觉得自己的角色应该是将这些技术带给病人。” 随着 CRISPR 研究工具的飞速发展,以及将于近期开始的临床试验,我们与目标的距离可能比想象中更近。