《Nucleic Acids Res:发现两种较小的新型Cas9核酸酶,有望更容易地进行基因组编辑》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-12-14
  • 在一项新的研究中,来自俄罗斯科学院、俄罗斯国家研究中心分子遗传学研究所和斯科尔科沃科学技术研究院等研究机构的研究人员描述了两种新的紧凑的Cas9核酸酶,即CRISPR-Cas系统具有切割活性的组分,这将有可能扩大Cas9工具箱在基因组编辑中的应用。这两种Cas9核酸酶中的一种被证实可以在人类细胞中发挥作用,因而可用于生物医学应用。相关研究结果发表在2020年12月2日的Nucleic Acids Research期刊上,论文标题为“PpCas9 from Pasteurella pneumotropica — a compact Type II-C Cas9 ortholog active in human cells”。论文通讯作者为俄罗斯国家研究中心分子遗传学研究所的Konstantin Severinov博士。

    CRISPR-Cas是借用细菌的基因组编辑技术,它依赖于Cas核酸酶;这些酶在CRISPR RNA的引导下,可以降解目标基因序列---它们是“基因剪刀”中的刀片。在研究应用中,最受欢迎的Cas9核酸酶是酿脓链球菌(Streptococcus pyogenes)Cas9,即II-A型SpCas9。它的效率很高,而且相对简单,这是因为一个较大的蛋白既能结合crRNA,又能切割DNA;它还需要一个短的PAM序列---一串位于在靶位点两端的核苷酸,以便SpCas9用来定位和“读取”它。

    但是SpCas9是一个较大的蛋白,当人们想使用腺相关病毒(AAV)颗粒作为载体将这种“基因剪刀”递送到细胞中时,这就会产生问题。理想情况下,人们希望将编码这种Cas蛋白的基因和向导RNA(gRNA)序列都装入一种病毒颗粒中,而这种尺寸限制需要较短的Cas9种类。然而,那些较短的核酸酶往往需要更长、更复杂的PAM,因此科学家们面临着蛋白大小和靶标选择之间的权衡。

    在这篇论文中,最近通过斯科尔科沃科学技术研究院博士答辩的Iana Fedorova以及Severinov实验室研究员Aleksandra Vasileva及其同事们描述了两种新的小型Cas9核酸酶:一种来自Defluviimonas sp.20V17(一种生活在热液喷口的细菌),即DfCas9,另一种来自侵肺巴斯德菌(Pasteurella pneumotropica,一种在啮齿动物和其他哺乳动物中发现的常见细菌),即PpCas9。这两种核酸酶恰好对AAV载体来说足够小,并且具有相对较短的PAM,对于Cas9核酸酶来说,这是“两全其美”的选择。

    这两种新的Cas9核酸酶与II-C型CRISPR-Cas系统有关,与SpCas9相比,通常表现为更小的Cas9效应物。这两种核酸酶采用了类似于其他Cas9蛋白的保守的双叶结构,但也有独特的特点:它们缺乏几个插入子结构域,并且有一个较小的Wedge结构域(负责与单向导RNA支架相互作用的结构域,因而更加紧凑。

    Fedorova说,“事实上,II-C型Cas9效应物往往需要较长的PAM序列,但这只是基于迄今描述的有限数量的II-C型Cas9效应物的观察。例如,最近发现的来自耳葡萄球菌(Staphylococcus auricularis)的Cas9(SauriCas9),与PpCas9类似,需要短的PAM(5'-NNGG-3')。很可能很快就会发现更多需要短PAM的II-C型Cas9酶。这些具有不同PAM要求的小型Cas9蛋白扩大了真核和原核基因组中潜在的可编辑DNA靶点的数量。”

    体外研究和在细菌中的实验表明,这两种Cas9核酸酶能高效地切割DNA,而且PpCas9核酸酶在人体细胞中也很活跃。这些结果也发现它们与其他已被证明在真核细胞中起作用的Cas9核酸酶-- Nme1Cas9和Nme2Cas9---非常相似。虽然还需要开展更多的研究来确定这两种Cas9核酸酶的效率,但是这些研究人员认为它们可能为微生物工程和生物医学基因组编辑中使用的更传统的核酸酶提供了一种可行的替代物。

    Fedorova指出,对PpCas9脱靶编辑(非预期修饰)的初步研究表明,这种酶具有合理的特异性。但要证实PpCas9的特异性足以被视为一种基因组编辑工具,还需要使用更复杂的方法进行额外的研究。

    她补充道,“此外,看起来PpCas9在靶向细胞中的不同基因方面表现出选择性。这可能会减少PpCas9可能的基因组靶点的范围,这种偏好性是一个值得进一步研究的课题。”

  • 原文来源:https://www.skoltech.ru/en/2020/12/fun-size-cas9-nucleases-hold-promise-for-easier-genome-editing/;https://academic.oup.com/nar/article/48/21/12297/5957178;https://news.bioon.com/article/6781964.html
相关报告
  • 《科学家首次发现阻断CRISPR-Cas9基因组编辑的小分子抑制剂》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-05-13
    • 在一项新的研究中,来自美国布罗德研究所等研究机构的研究人员发现酿脓链球菌Cas9(SpCas9)的首批小分子抑制剂能够更精确地控制基于CRISPR-Cas9的基因组编辑。具体而言,他们通过开发一系列高通量生物化学分析方法和基于细胞的分析方法,筛选了许多小分子,以便鉴定出能够破坏SpCas9与DNA结合因而干扰它的DNA切割能力的化合物。这些首批小分子CRISPR-Cas9抑制剂很容易进入细胞,并且比之前发现的抗CRISPR蛋白小得多。这些新化合物可以对基于SpCas9的编辑技术进行可逆的和剂量依赖性的控制,包括它们在哺乳动物细胞中进行基因编辑、碱基编辑和表观遗传编辑的应用。相关研究结果发表在2019年5月2日的Cell期刊上,论文标题为“A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9”。 论文通讯作者、布罗德研究所的Amit Choudhary说道,“这些技术为快速鉴定和使用针对SpCas9和下一代CRISPR相关核酸酶的小分子抑制剂奠定了基础。靶向CRISPR相关核酸酶的小分子抑制剂具有广泛应用于基础研究、生物医学和国防研究以及生物技术应用的潜力。” 当前,SpCas9正在开发作为多种疾病(包括艾滋病、视力障碍、肌肉萎缩症和其他遗传性疾病)的基因治疗试剂。但是,这些治疗应用将极大地受益于对SpCas9活性的剂量和时间安排进行精确控制以减少脱靶效应。控制SpCas9活性的这些方面也可能使其他应用受益,比如对模型生物的DNA进行高效编辑来构建疾病模型和研究疾病,以及在基因工程蚊子中使用基因驱动来遏制疟疾和其他蚊子传播疾病。 对SpCas9的剂量和时间控制的需求已产生了对抗CRISPR分子的需求。尽管存在靶向SpCas9的抗CRISPR蛋白,但是它们是大分子,不易渗透到细胞中,起着不可逆的作用,可被蛋白酶分解,并且可能在体内存在引起不良免疫反应的风险。相反,小分子抑制剂在蛋白水解上是稳定的,可逆的,通常是非免疫原性的,并且能够通过被动扩散轻松地递送到细胞中。此外,它们可以低成本地大规模合成,具有很小的批间差异。 在这项新的研究中,Choudhary及其团队推出了一个强大,灵敏且可扩展的平台,用于快速、经济地鉴定和验证SpCas9的小分子抑制剂。鉴于SpCas9酶的特性,以高通量方式测量CRISPR-Cas9活性从而进行药物筛选一直是具有挑战性的。为此,Choudhary团队分别开发了针对SpCas9-DNA结合和SpCas9 DNA切割活性的高通量初级和二级测定方法。对于初级测定,他们使用一种称为荧光偏振的生物化学技术来监测SpCas9与含有PAM序列的经过荧光团标记的DNA片段之间的相互作用。在二级测定中,他们使用自动显微镜来测量在细胞中由SpCas9介导的对报告基因进行DNA切割后产生的荧光变化。 通过使用这些测定方法,这些研究人员首先筛选了多种类型小分子的代表成员,以确定其成员经常抑制SpCas9的小分子类型。他们鉴定出两种先导化合物,它们以剂量依赖性方式破坏了哺乳动物细胞中SpCas9结合DNA和抑制SpCas9介导的DNA切割的能力。鉴于这些小分子阻断这种酶结合DNA,因此它们还抑制SpCas9的催化活性受到破坏的编辑技术,包括用于转录激活的那些技术,而且在人血浆中是稳定的。 Choudhary说,“这些结果为对CRISPR-Cas9活性的精确化学控制奠定了基础,从而能够安全地使用这些技术。然而,这些分子还没有为人类应用做好准备,也没有在生物体内进行功效测试。” 在未来的研究中,这些研究人员计划鉴定这些抑制剂在SpCas9:gRNA复合物上的结合位点,研究它们的作用机制,并优化它们的功效。他们还将确定这些分子是否与哺乳动物细胞中的其他靶标相互作用,并评估它们对其他的CRISPR相关核酸酶的特异性。这项新研究的早期结果表明这些分子对它们的靶标极具特异性,这是因为它们对与SpCas9的亲缘关系较远的CRISPR相关酶Cas12a没有影响。
  • 《研究人员开发出新型Cas9核酸酶 提高基因编辑安全性》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-07
    • CRISPR/Cas9基因编辑技术问世以来已经在很多领域得到广泛的应用。利用这一技术开发的基因疗法在医疗健康领域中具有巨大的应用前景。CRISPR/Cas9技术能够对基因组在指定位点进行基因编辑,但是对这项技术的一个常见的忧虑是担心基因编辑会在不该出现的地方发生。日前,英国巴斯大学(University of Bath)和卡迪夫大学(Cardiff University)的研究人员利用合成生物学(synthetic biology)技术开发出一种新型Cas9核酸酶。它让CRISPR/Cas9基因编辑系统的活性受到一个低成本、丰富、无毒的氨基酸的调控,从而让CRISPR/Cas9技术更为安全可控。这项研究发表在最新一期的《Scientific Reports》期刊上。 CRISPR/Cas9技术的重要一环是名为Cas9的核酸酶,它能够切断双链DNA,从而介导基因编辑的产生。理想的Cas9应该在需要完成基因编辑任务时表达,在完成基因编辑任务后失活。在调控Cas9核酸酶活性的研究领域,科学家们已经获得了重大进展,目前Cas9核酸酶的活性可以被光、温度、以及抗生素调控,但是这些调控手段都有不同的缺陷。例如,利用抗生素调控的Cas9核酸酶通常无法完全抑制Cas9的活性,而且使用抗生素可能影响动物的微生物组,从而产生其它的副作用,并且可能导致自然界中的细菌产生对抗生素的抗性。 巴斯大学和卡迪夫大学的研究人员利用了合成生物学中基因密码子扩展(codon expansion)技术生成了一种新型Cas9核酸酶。自然界的蛋白由20种天然氨基酸组成,而细胞的蛋白合成机制利用64种基因密码子来完成蛋白合成过程。基因密码自扩展技术将特定密码子与非天然氨基酸配对,让细胞在合成蛋白时在特定位点加入非天然氨基酸,从而赋予蛋白新的功能。 在这项研究中,研究人员将原本编码中止信号的“UAG”密码子与一种名为BOC的非天然氨基酸配对,他们同时在编码Cas9蛋白的基因序列中引入UAG密码子。这导致这种新型Cas9蛋白的合成时需要环境中存在BOC氨基酸,如果BOC氨基酸不存在,那么Cas9蛋白就无法合成,CRISPR/Cas9基因编辑系统就没有活性。而在环境中加入BOC氨基酸则会导致Cas9蛋白的合成,激发基因编辑系统的活性。 利用体外细胞培养模型和转基因小鼠模型,研究人员证明了这种新型CRISPR/Cas9基因编辑系统只在BOC非天然氨基酸存在的情况下才会表现出基因编辑活性。这种调控系统的优势在于它可以中止Cas9蛋白的产生,从而在不需要基因编辑的情况下完全抑制Cas9核酸酶的活性。而且BOC氨基酸是一种赖氨酸的衍生物,它无毒、丰富、成本低、而且不会对环境产生不良影响。 “从生物医药到食品安全,基因编辑在生命科学的多个领域中具有巨大的潜力,”文章的负责人之一,卡迪夫大学的蔡羽轩博士说:“BOC提供了一种前景看好的调控基因编辑的方式。我们将继续努力完善这一创新基因编辑系统。”