《合成营养成分玉米黄素 “菌宝宝”的方法成本低产量高》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2019-12-04
  • 玉米黄素(zeaxanthin)是光合生物的重要色素,具有保护细胞免受高光损伤的作用。它也是视网膜黄斑重要色素,具有保护眼睛、维护视觉和认知等功能。

      科技日报记者近日从中国科学院昆明植物研究所了解到,该所黄俊潮研究员率领的研究团队,在利用工业微生物生产玉米黄素的研究方面取得了重要进展。

      天然玉米黄素来源贫乏

      玉米黄素是β-胡萝卜素的衍生物,呈脂溶性粉末状或油状,存在于绿色蔬菜、玉米种子、枸杞和酸浆果实等植物组织和一些微生物中。它不能由人和动物自身合成,必须从食物中摄取。但人体每天需摄取数毫克的玉米黄素,日常饮食只能获得微克水平,大多数人因此缺乏玉米黄素。相对于叶黄素、β-胡萝卜素等其他类胡萝卜素,玉米黄素的自然资源更加贫乏,因此发掘玉米黄素新资源具有现实意义。

      大量研究表明,玉米黄素具有抗氧化、预防黄斑衰退、治疗白内障、预防心血管疾病、增强机体免疫力、减缓动脉粥样硬化等健康功效。随着人口老龄化引发的相关疾病增多,玉米黄素作为膳食补充剂,可在医药和功能食品领域发挥重要作用。在食品工业中,玉米黄素作为天然食用色素,正在逐渐取代柠檬黄、日落黄等合成色素。

      有望实现产量翻番的目标

      黄俊潮研究员向记者介绍,此前,他们团队聚焦于虾青素的生物合成研究,研究对象涉及到藻类、细菌和高等植物,并取得一系列研究进展,为后来开展自然资源稀缺的玉米黄素和念珠藻黄素等其他类胡萝卜素的生物合成奠定了良好基础。“迄今,对玉米黄素和念珠藻黄素资源的发掘以及它们的功能研究相对较少。”

      鞘氨醇单胞菌广泛分布于各种环境中,是普遍认为安全的菌株,这类菌多数能合成不同的类胡萝卜素,如β-胡萝卜素、玉米黄素、念珠藻黄素等,已用于工业化生产多用途的胞外多糖。

      通过比较功能基因组学分析和代谢工程改造,团队成功获得一株新的、能合成和积累玉米黄素的鞘氨醇单胞菌DIZ工程菌株。随后,经过优化培育,他们惊喜地发现,在发酵罐吃住4天后,这种“菌宝宝”竟然可得到每升培养物含479毫克的玉米黄素,以及22克胞外多糖。这也是业界首次对鞘氨醇单胞菌实现遗传操作,获得高产玉米黄素的安全工程菌株。

      “通过进一步的改良,有望实现玉米黄素产量翻番的目标,从而解决目前玉米黄素供不应求、价格高等问题。”黄俊潮告诉记者。这项研究结果已发表在国际期刊《农业与食品化学杂志》上。

      微生物方法将成产业主流方向

      根据国内外媒体的报道,目前,在玉米蛋白粉中提取玉米黄素已有成熟的工艺。但黄俊潮研究员介绍,虽然从玉米提取玉米黄素的技术成熟,但其产量低、成本高,只能作为玉米加工业的副产品看待。通过代谢工程改造的微生物——鞘氨醇单胞菌DIZ菌株,玉米黄素产量远高于用玉米提取的产量。且微生物拥有生长周期短、生物量高以及大规模发酵培养等优势,利用微生物生产自然资源稀缺的玉米黄素,将是产业的主流方向。

      合成生物学通常以大肠杆菌和酿酒酵母为研究对象,研究成果的转化很大程度上还得依赖于生产工艺成熟的工业微生物,尤其是那些食品安全级微生物。利用这些微生物“朋友”,可以低成本生产药物或食物所需的强抗氧化功能类胡萝卜素和多不饱和脂肪酸。“团队未来将聚焦发掘能高产这些功能分子的微生物资源和植物新品种。”黄俊潮说。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2019-12/04/content_436096.htm?div=-1
相关报告
  • 《新的营养成分信息》

    • 来源专题:食物与营养
    • 编译者:李晓妍
    • 发布时间:2019-11-22
    • 你曾经想过查看食物中维生素、矿物质和其他营养素的来源吗?国家农业图书馆的食物和营养信息中心根据食物的营养成分列出36个表格。表中列出了维生素、矿物质、植物营养素和大量营养素,并且按家庭测量标准列出了从最高到最低的营养素含量。 美国农业部的国家标准参考营养数据库SR Legacy包含了7793种食品和多达150种食品成分的数据,是目前在食品和营养信息中心网站上托管的36种营养成分列表的基础。这些列表可以在网站的食物成分部分找到,并按营养素对人体的贡献进行分类。对于那些想要通过食用某种食物来源而不是膳食补充剂来增加其摄入量的人,例如叶黄素和玉米黄质,植物营养素组提供了一份长达八页的食物来源清单。对于高热量和低热量食物的简单列表,总热量列表可以在宏量营养素组中找到。
  • 《新型转基因玉米产量提高10%》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-11-15
    • 长期以来,基因工程的支持者们一直坚信,它将有助于满足全球日益增长的粮食需求。然而,尽管已经培育出许多抗虫害和抗除草剂的转基因作物,科学家在促进农作物产量方面却一直难有作为。如今,研究人员首次证明,通过改变一种促进植物生长的基因,他们终于可以放心地将玉米产量提高10%,而不用管生长条件是好是坏。 “这太不可思议了。”并未参与该项研究的美国艾姆斯市爱荷华州立大学分子生物学家Kan Wang说。她表示,除了提高玉米产量外,新的转基因技术还将激励研究人员努力提高其他农作物的产量。 全世界种植最广泛的转基因作物(包括大豆、玉米和棉花)都是通过一些相对简单的基因改良创造出来的。例如,通过将细菌的一个基因添加到特定的农作物品种中,科学家赋予了它们合成一种可以杀死多种昆虫的蛋白质的能力。另一种简单的基因操作结果可以使农作物抵抗草甘膦或其他除草剂,这样做的一个好处是让农民可以在不侵蚀土壤的前提下除掉杂草。还有一种操作可以在干旱时保护农作物。但是,由于植物的生长过程涉及许多复杂的遗传因素,因此想要培育出在良好条件下产出更多粮食的农作物,难度很大。 从2000年开始,世界各地的转基因公司开始认真筛选能够提高农作物产量的单个基因。然而只有少数经过鉴定的基因显示出了希望,并且由于成功率低,许多公司已经减少或停止筛选与农作物产量有关的基因。 但是Corteva农业科学公司(一家位于特拉华州威明顿的化学和种子公司)的研究人员决定研究那些像总开关一样影响农作物生长和产量的基因。 研究人员选择了在许多植物中常见的一类名为MADS-box的基因,然后在其中选择了一种基因(zmm28)来改变玉米植株。研究调节发育的基因的挑战在于确保它们在正确的时间和正确的组织类型中开启正确的数量。参与领导这项研究的Corteva农业科学公司的植物生理学家Jeff Habben说,如果基因过于活跃,“很容易把植物搞得一团糟”。 研究小组的目标是使zmm28与一个新的启动子融合,后者是一段控制基因激活时间的脱氧核糖核酸。在尝试了十几次之后,他们找到了一种可靠的方法。 通常,当玉米开始开花时,zmm28就会启动。而增加的启动子能够比自然发生更早地启动zmm28,并且在开花后继续促进基因的有益作用。 “如果你让基因工作得更努力、更长久,就能让植物表现得更好。”Wang说。 研究人员在48种商用玉米中测试了增强基因的表现,这些玉米被称为杂交玉米,通常用于饲养牲畜。在2014年至2017年的美国玉米种植区田间试验中,研究人员发现,转基因杂交作物的产量通常比对照组作物多3%~5%。 研究小组本周在美国《国家科学院院刊》上发表报告称,有些玉米的产量增加了8%~10%。同时不管生长条件是好是坏,这种好处都是存在的。 “这是转基因作物在田间环境中对产量发挥实际作用的最好例子之一。”英国哈彭登市洛桑研究所农作物科学家Matthew Paul说。 导致玉米增产的原因有几个。首先,经过基因改造的植物的叶子要稍大一些,从而使植物将阳光转化为糖分的能力提高了8%~9%。 “这种增长确实是一件大事。”Corteva农业科学公司植物生理学家Jingrui Wu说,因为通过基因工程很难改善光合作用。 其次这些植物在利用氮的效率方面也提高了16%~18%。氮是一种重要的土壤营养物质,复杂的遗传因素使其成为植物育种家难以控制的另一种特性。 比利时佛兰德斯VIB研究所分子生物学家Dirk Inze说:“从商业角度来说,这看起来很有希望。”Corteva农业科学公司已经向美国农业部(USDA)申请批准新的高产杂交品种。(虽然zmm28及其启动子在玉米中自然存在,但它们是使用被USDA监管的一种生物技术配对的) Habben估计,这项新技术大概需要6到10年的时间才能获得世界各国的正式批准。Inze说,相关的调控基因很有可能提高其他谷物的产量。 玉米的大规模田间示范“强化了我们的信念,即如果我们处理得当,内在产量是可以提高的”。Wang说,“这确实会给人们带来灵感。”