《石榴石相固态电解质显著降低液态金属锂电池工作温度》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2018-09-19
  • 以熔融锂金属作为负极的液态金属电池具有极高的电容量,长久以来在工业领域有较广的应用。但由于锂金属熔点较高,电池工作温度一般在450℃以上,导致运营成本居高不下;此外,熔融盐中锂的溶解会导致自放电和较低的库伦效(<98%)。美国斯坦福大学的Yi Cui教授领导的研究团队设计开发了一种基于石榴石相结构固态电解质的液态锂金属电池,可在240℃左右温度稳定运行,同时展现出优异的电化学性能。

    研究人员采用熔融锂金属为负极,熔融锡铅合金(Sn-Pb)或铋铅(Bi-Pb)合金为正极,选用石榴石相结构的锂镧锆钽氧化物Li6.4La3Zr1.4Ta0.6O12 (LLZTO) 陶瓷管作为全固态电解质,组装了两种结构的液体锂金属电池系统:Li||LLZTO||Sn-Pb和Li||LLZTO||Bi-Pb,其中熔融锂金属负极在LLZTO陶瓷管内部,合金正极在外部。管状陶瓷电解质一方面将熔融锂金属负极包裹在内,起到锂离子传导作用,同时可以作为隔层将锂金属负极与合金正极隔开。在240℃、50mA cm-2和100 mA cm-2电流密度下,Li||LLZTO||Sn-Pb和Li||LLZTO||Bi-Pb两种电池均可以稳定循环约一个月,且几乎没有容量衰减,平均库仑效率为99.98%,这是迄今为止已报道的工作温度最低的液体金属锂电池。并且,该电池还具有高功率特性,Li||LLZTO||Sn-Pb电池在电流密度高达300 mA cm-2时,功率密度为90 mW cm-2;Li||LLZTO||Sn-Pb电池在电流密度高达500 mA cm-2时,功率密度为175 mW cm-2。而就成本而言,全固态电解质LLZTO成本仅为0.037美元/克, Li||LLZTO||Sn-Pb和Li||LLZTO||Bi-Pb全电池成本依次为160美元/千瓦时和80美元/千瓦时,较为低廉。这种中低温、高安全性、低成本电池将在电网等大规模储能领域展现出广阔的应用前景。

    该项研究巧妙设计了管状的石榴石型LLZTO全固态电解质,在此基础上制备了液态锂金属电池,在保持电池高性能和稳定性前提下,使电池的工作温度下探到了创纪录的240℃低温,为设计和开发高效低温的液态金属电池开辟了新路径。相关研究成果发表在《Nature Energy》。

相关报告
  • 《无负极的双盐液态电解质锂金属电池展现长循环寿命》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-12-01
    • 锂金属电池因为具备了比传统锂离子电池更高的能量密度,被认为是最具发展潜力的下一代电池技术。然而锂枝晶生长导致电池性能寿命衰退,锂过量使用限制了能量密度的提升,阻碍了该电池技术的实际应用。解决枝晶问题的传统思路是采用固态电解质替代液态电解质,但是目前效果甚微;而减少锂的用量更是困难重重。 加拿大达尔豪斯大学的J. R. Dahn教授课题组设计了一种基于无负极(即负极只采用铜集流体,锂在第一个充电循环时从正极分解出来沉积到铜集流体表面形成锂金属层充当电极)和液态双盐电解质的锂金属电池,实现了90余次的稳定循环,是迄今为止无负极锂金属电池的最长循环寿命。由于没有使用过量的锂,因此电池体积可最小化,能量密度也实现了最大化。此外,由于利用的是传统液体电解质,意味着可以利用现有成熟的锂电池生产线快速投入生产,大幅降低时间(开发新固态电解质)和经济成本。研究人员分别制备了六氟磷酸锂(LiPF6)、六氟硼酸锂(LiBF6)单盐液体电解质和二氟(草酸根)合硼酸盐((LiDFOB)/LiBF4)双盐液体电解质,随后以上述电解质分别组装三种无负极的锂金属电池器件。容量保持测试显示采用单盐电解质的电池器件仅仅经过不到15次循环后容量便下降到80%以下,而采用双盐电解质的电池器件经过50次循环后依旧保持了97%的初始容量,循环80余次仍旧可以保持80%的初始容量,这是目前为止无负极锂金属电池的最长循环寿命。为了探明潜在的作用机制,研究人员采用扫描电镜对循环前后的电池电极进行表征,发现采用单盐电解质的电池电极出现了大量的锂枝晶;相反,采用双盐电解质的电池电极循环后表面没有观察到锂枝晶,而依旧呈现光滑的形貌,是由直径为50 μm紧密堆积的锂畴组成。研究人员进一步采用核磁共振(NMR)观察双盐电解质在循环过程中变化情况,发现电解质盐在循环过程中连续被消耗,这是电池稳定性逐步变差的重要原因,而这也是研究人员下一步将重点开展的工作,即优化液体电解质,有效抑制消耗,进一步提升电池循环稳定性。上述实验结果表明,使用目前已经成熟的液体电解质体系可以实现锂金属电池的稳定循环,而这有助于借用现有的成熟生产流水线快速投入生产,以降低成本。 该项研究设计了双盐液态电解质并在此基础上制备了无负极锂金属电池,实现了无负极锂金属电池迄今最长的循环寿命,表明了采用当下成熟的液态电解质也可以实现锂金属电池的稳定循环,而这意味着现有的制造设备可快速投入使用,大幅降低生产成本,有助于加快锂金属电池的商业化进程。相关研究成果发表在《Nature Energy》。
  • 《全磷酸盐体系电极电解质增强全固态锂电池性能》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-12-29
    • 全固态电池采用全新固态电解质取代当前有机电解液和隔膜,具有高安全性、高能量密度、广泛的高比能电极体系适配性等优点,有望成为下一代动力电池的终极解决方案。然而,固态电解质和电极之间较差的接触性引起电池传输电阻过大问题限制了电池性能,成为该电池商业化的一大障碍。德国尤里希研究中心Ru?diger-A. Eichel教授课题组设计开发一种磷酸体系的全固态电池(磷酸体系电极、磷酸体系固态电解质),有效地改善了电极和固态电解质接触性,显著减少了电池传输电阻,增强了电池的放电比能量和循环寿命。研究人员首先合成了磷酸体系的正负电极LiTi2(PO4)3 (LTP)和Li3V2(PO4)3(LVP),以及电解质Li1.3Al0.3Ti1.7(PO4)3 (LATP)。X射线衍射谱(XRD)测试显示,电极和电解质的晶体结构高度相似,有助于电极和电解质材料匹配,改善界面连结性,降低阻抗。扫描电镜表征显示,LTP电极是由纺锤体状的纳米颗粒单元组成,平均长度约6 μm;而LVP电极组成单元则是平均长度约6~8 μm纳米针;氮气的脱吸附曲线测试结果显示,上述两个电极均是多孔结构,这有利于固态电解质填充到内部,改善界面传输电阻促进离子传输。接着将LATP与炭黑和乙基纤维素粘结剂混合并压制成块体的固态电解质,室温下离子导电性达到了近1 mS/cm,完全满足电池需求。而为了让其能够与电极更好形成界面接触,对电解质表面进行抛光处理,使其表面的粗糙度(高低起伏的平均幅度)达到8 μm以上,大于电极颗粒的平均粒径(让电极起伏界面能够与电解质契合),从而让电极和固态电解质能够形成良好的接触界面。随后将抛光的固态电解质LATP与LTP、LAP电极组装成完整的单片电池LTP‖LATP‖LAP,并与采用传统液态电解质的电池进行电化学循环对比测试。在0.2-2.8 V电压窗口、0.078C倍率下,采用传统液态电解质电池初始循环放电比容量为100 mAh g–1,然而经过50次循环后电池容量便大幅衰减70%;相反同样倍率下,采用磷酸体系全固态电解质电池初始放电比容量为98 mAh g–1,经过50次循环后容量基本无衰退,而且当将倍率翻20倍到0.39C,电池依旧可以获得76 mAh g–1的初始放电比容量,经过500多次的循环后放电比容量为63.5 mAh g–1,保持了初始容量的84%。由上可知,全磷酸体系电解质和电极电池不仅循环稳定性更加优异,还具有更高的倍率性能。该项研究设计合成了全磷酸体系的固态电解质和电极,显著改善了电解质和电极的界面接触减少了界面传输阻抗,增强了电池的倍率性能、循环稳定性和容量保持率,为设计开发高效长寿命的全固态锂离子电池提供了新思路。相关研究成果发表在《ACS Applied Materials & Interfaces》。