《英国国家物理实验室(NPL)发布《英国工程生物学的标准和度量指标》报告,确定了支持英国工程生物学公司的优先领域》

  • 编译者: 李晓萌
  • 发布时间:2025-01-03
  • 工程生物学(EngBio)在全球和英国的潜力不容小觑。通过提供正确的工具来帮助各种规模的公司进行创新并将这些创新转化为商业规模,将实现在健康、能源、材料、化学品生产和废物管理等不同领域实现这一潜力。

    为了确定支持英国工程生物学公司的标准和指标的优先领域,英国国家物理实验室(NPL)与伦敦帝国理工学院合作举办了一次以英国行业为重点的研讨会。该研讨会汇集了英国工程生物学的利益相关者,包括来自行业、标准专家、资助机构、英国测量系统和学术界的利益相关方,共同讨论了支持英国工程生物学公司成功将新产品和技术推向市场所需的关键优先事项和资源。

    该报告现已发布,概述了关键建议,总结了研讨会成果,并确定了标准和指标的需求和机会,以解决英国工程生物学公司商业化的现有障碍。这些建议涵盖了创建强大的计量基础设施所需的许多基本要素,以应对英国公司面临的当前和不断变化的挑战。概述的建议包括数据和测量标准的开放存储库和共享平台、工程生物学系统和工艺的商定词汇、监管指南以及英国生物质可用性和规格的映射。包括:

    ·词汇和术语;

    ·参考资料、数据标准;

    ·量化生物过程的计量学;

    ·翻译横向和纵向扩展的指标;

    ·可持续性评估指标;

    ·生物质原料使用标准。

    NPL生命科学与健康主管Michael Adeogun博士评论道:工程生物学作为平台技术的崛起是由一系列技术的融合推动的,这些技术使人们能够以前所未有的方式理解、表征、设计和开发生物系统。报告中总结的研讨会成果为建立帮助英国工程生物学公司在生物经济各个领域发展壮大所需的标准、指标和计量提供了坚实的基础。

    解决围绕计量、标准和度量需求的一些更具体的挑战,以支持人工智能驱动的工程生物学系统设计和生物过程的量化,

    NPL生物计量学研究员Max Ryadnov教授评论道:英国公司呼吁采用系统指标来量化其产品和技术的性能,并要求在提供这些指标时保持公正,以实现可比性。衡量标准解决了这两个挑战,但需要通过与行业创新者的持续接触来确定优先事项。本次研讨会的成果为实现工程生物学的全部潜力创造了急需的起点。

    这项以英国为中心的工作是在Freemont教授领导的最近国际努力的基础上进行的,包括NPL和其他NMS合作伙伴的投入,以解决工程生物学缺乏标准化的问题。该全球报告强调了需要相关标准和指标来缓解整个行业的主要问题,包括数据集成、互操作性以及产品安全和质量。

    伦敦帝国理工学院Paul Freemont教授评论道:“这个领域的愿景是,一家有伟大想法的公司可以在没有技术和监管障碍的情况下进入市场。正确的标准和指标将使建立和发展公司的过程更容易,但需要达成共识和开放的过程来建立易于访问的知识库。

相关报告
  • 《与五家使用AI工程生物学的合成生物学公司会面》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-09-24
    • 电视和广播称“人工智能即将来临”,它将接替您的工作并在国际象棋上击败您。 但是,人工智能已经来临了,它可以在国际象棋上击败您,这是世界上最好的。在2012年,Google还使用它来识别YouTube视频中的猫。今天,这就是特斯拉拥有Autopilot,Netflix和Spotify似乎“读懂你的思想”的原因。现在,人工智能正在改变合成生物学的领域以及我们如何设计生物学。它可以帮助工程师设计出新的方法来设计基因回路,并且通过已获得的巨额投资(过去10年中的12.3亿美元)及其正在破坏的市场,它可能对人类的未来产生重大影响。 人工智能的概念相对简单,它是具有推理,学习和决策行为的机器编程。一些AI算法(只是计算机遵循的一组规则)在这些任务上非常出色,以至于可以轻易胜过人类专家。 我们听到的关于人工智能的大多数信息都涉及机器学习,这是AI算法的子类,可以从数据中推断出模式,然后使用该分析进行预测。这些算法收集的数据越多,其预测就越准确。深度学习是机器学习的一个更强大的子类别,其中大量称为神经网络(受大脑结构启发)的计算层协同工作以增加处理深度,从而促进诸如高级面部识别(包括iPhone上的FaceID)之类的技术)。 [有关人工智能及其各个子类别的更详细说明,请查看本文及其流程图。] 无论AI的类型或用途如何,我们都处于计算革命之中,它将其卷须扩展到“计算机世界”之外。很快,AI将影响您服用的药物,燃烧的燃料,甚至是您用来洗衣服的洗涤剂。 特别是生物学,是人工智能最有希望的受益者之一。从调查导致肥胖的遗传突变到检查癌细胞的病理样本,生物学产生的数据非常复杂,令人费解。但是,这些数据集中包含的信息通常提供有价值的见解,可用于改善我们的健康状况。 在合成生物学领域,工程师寻求“重新连接”活生物体并为其编程以新功能,许多科学家正在利用AI设计更有效的实验,分析其数据并使用其来创建突破性的疗法。这是五家将机器学习与合成生物学相结合的公司,为更好的科学和更好的工程铺平了道路。 Riffyn催化干净的数据收集和分析 (加州奥克兰,成立于2014年,已筹集了2490万美元) 机器学习算法必须从大量数据开始-但是,在生物学上,要生成好的数据非常困难,因为实验耗时,繁琐且难以复制。幸运的是,有一家公司正在通过简化科学家的工作来解决这一瓶颈。 Riffyn基于云的软件平台可帮助研究人员标准化,定义和执行实验,并简化数据分析,这使研究人员能够专注于进行实际的科学研究,并使使用机器学习算法从他们的实验中获得更深刻的见识成为日常现实。 使用此平台,可以更有效地进行实验,从而导致成本大幅下降,生产率和质量得到改善,并且准备使用复杂的机器学习技术进一步分析数据。这意味着公司可以使用这项技术来开发用于癌症治疗的新蛋白质,并且他们可以比以前更快,更好地做到这一点。里芬(Riffyn)已经与15家全球生物技术和生物制药公司中的8家进行了合作-他们成立于五年前。 Microsoft Research Station B:汇集编程生物学的难题 (英国剑桥,于2019年正式启动) 合成生物学世界中有许多活动的部分,这使得尽可能简化和整合操作变得困难而至关重要。在过去的十年中,Microsoft Research的计算生物学部门B站一直在开发生物学的机器学习模型,以解决此问题并加快从医学到建筑的各个领域的研究。 它的努力也以各种新的伙伴关系的形式获得了回报。借助Synthace,它正在开发用于自动化和加速实验室实验的软件。 B站还与普林斯顿大学合作,通过利用基于机器学习的方法从生物生长不同阶段拍摄的图像中提取图案,研究生物膜背后的机制(与细菌菌落如何产生抗生素抗性有关)。 B站还与牛津生物医学公司合作,该公司利用这些机器学习功能来改善针对白血病和淋巴瘤的有前途的基因疗法。这也许是合成生物学影响最大的领域之一:设计与多种疾病作斗争的疗法。 Atomwise:深度学习解码结构蛋白设计的黑匣子 (总部位于美国加利福尼亚州旧金山,成立于2012年,已筹集了5100万美元) Atomwise正在通过其称为AtomNet的深度学习平台来应对药物开发,该平台可以快速对分子结构进行建模。它可以准确地分析小分子内的化学相互作用,从而预测针对埃博拉病毒至多发性硬化症等疾病的功效。通过利用有关原子结构的数据,Atomwise设计了新颖的疗法,否则将几乎不可能开发。 他们与包括Charles River Laboratories,默克,多伦多大学和杜克大学医学院在内的机构建立了众多学术和公司合作伙伴关系,这些机构正在提供许多现实世界的应用程序和机会来推动这项研究的发展。他们最近还宣布了与江苏汉寿药业集团的高达$ 1.5B的合作,该公司是今年最大的生物制药IPO之一。 尽管Atomwise的分子设计方法功能强大且可以有效抵抗多种疾病,但还没有一种完美的方法来进行计算发现。那就是Arzeda进来的地方。 Arzeda:使用从头深度学习重写蛋白质设计规则 (华盛顿州西雅图市,成立于2008年,已筹集了1520万美元) Arzeda是一家来自华盛顿大学贝克实验室的公司,利用其蛋白质设计平台(当然植根于机器学习算法)来对蛋白质进行工程改造,从工业酶到农作物及其微生物群落。 Arzeda完全从零开始(或从头开始)构建其分子,而不是优化现有分子,以执行自然界中未发现的新功能;深度学习技术对于确保其设计的蛋白质正确折叠(非常复杂的计算问题)并按预期发挥功能至关重要。一旦完成计算步骤,就可以通过发酵(就像啤酒一样)来生产新蛋白质,而绕过自然进化过程以有效地生产全新的分子。 分布式生物:彻底改变流感,癌症,蛇咬等的未来 (加利福尼亚州南旧金山,成立于2012年,由许可技术自筹资金) 在设计范围的另一端,Distributed Bio利用合理的蛋白质工程技术来优化现有的抗体,这些抗体是您体内的蛋白质,可以检测细菌并与其他引起疾病的入侵者抗争,从而创造出新颖的疗法。 Tumbler平台是该公司拥有的众多免疫工程技术之一(从通用流感疫苗到广泛覆盖的蛇抗蛇毒)。 Tumbler使用机器学习方法创建了超过5亿种起始抗体变体,以扩展和量化分子中哪些变化最有价值的搜索空间。然后,它会对序列进行评分,以预测它们在现实生活中与目标的结合程度,并使用“有价值的变化”信息进一步改善得分最高的序列。随着最高级序列的合成和在实验室中的测试,生产周期继续进行。最终,原型分子应运而生,以实现预期的治疗目的-自然界中不一定观察到这种现象,而是结合了所有可能的最佳特征。 Tumbler已帮助实现了超越传统单一靶标药物开发的广泛应用-从设计可同时与多个靶标结合的抗体到创建嵌合抗原受体T细胞(CAR-T)治疗(与Chimera Bioengineering一起)用于癌症治疗具有降低的毒性,此端到端优化平台大规模产生理想抗体的能力是空前的。 尽管这一进展令人兴奋,但人工智能并不是我们对自然界研究的普遍替代,也不是开发治疗人类疾病的唯一方法。有时,它在技术上可能没有用,甚至从道德上讲也不是合理的。随着我们继续获得这项技术的好处并将其日益融入我们的日常生活中,我们必须继续就合成生物学和AI创新的设计,实施和道德操守进行对话。我们站在科学和人类新时代的悬崖上。 ——文章发布于2019年9月19日
  • 《英国国家物理实验室(NPL)发布《氢能产业的计量挑战》报告,指出清洁氢经济面临的主要计量挑战》

    • 编译者:李晓萌
    • 发布时间:2024-08-20
    • 近日,英国国家物理实验室(NPL)发布《氢能产业的计量挑战》报告,概述了清洁氢经济需要解决的关键需求和挑战,以促进氢经济并支持英国实现其净零目标。 该报告确定了氢经济四个领域的计量挑战:生产、储存、分配和最终用途。解决这些挑战对于发展氢经济和使英国实现其净零目标至关重要。 其中包括: ·降低电解氢的生产成本。 ·支持氢储存和分配基础设施的推出。 ·开发能够进行先进材料研究的新测试设施,以支持新兴的氢技术。 ·填补整个氢气价值链中监管、技术和测量标准的空白。 ·通过支持氢最终用途技术的进步,实现不同行业的脱碳。 NPL科学家Ali Al Sikab在评论该报告时表示:“过去几年,英国对氢技术的快速开发和推广的投资有所增加。英国政府已承诺向议会输送高达5亿英镑的绿色氢,以期到2030年提供清洁能源。与许多新技术和创新一样,计量学(测量科学)是其标准化和成功运作的核心,这反过来又导致了更广泛的商业应用。 NPL已准备好与政府、行业和学术界合作,解决新报告中确定的需求和挑战,使氢技术作为一种商业替代能源继续获得动力,为英国的能源转型做出重大贡献。”