《半导体所撰写石墨烯基材料拉曼散射及其应用的综述论文》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-02-02
  • 中国科学院半导体研究所谭平恒研究员长期从事低维材料的拉曼光谱研究,特别是在石墨烯等二维材料的拉曼光谱方面积累了丰硕成果。最近,谭平恒研究员撰写了关于石墨烯材料拉曼散射及其应用的综述论文,目前已被英国皇家化学学会旗下期刊《 Chemical Society Reviews 》在线发表( http://doi.org/10.1039/c6cs00915h )。吴江滨博士为该论文的第一作者,谭平恒研究员为通讯作者。

    该综述系统地回顾了近年来石墨烯基材料的拉曼光谱在基础研究和器件应用方面的进展。首先,该文章描述本征的单层石墨烯的一阶和二阶拉曼光谱,接着讨论了不同堆垛方式的多层石墨烯的拉曼光谱,并且介绍了拉曼光谱作为一种技术手段如何表征石墨烯的层数,探测单层和多层石墨烯中的共振现象及获得石墨烯材料的二维成像。该综述还系统地论述了如何运用拉曼光谱来探测单层或者多层石墨烯中的微扰,以及如何将这些机理拓展到其它的石墨烯基材料,如石墨烯量子点、碳点、氧化石墨烯和氧化还原石墨烯、石墨烯纳米带、化学气相沉积生长的石墨烯、 SiC 表面外延生长的石墨烯、石墨烯复合物以及石墨基二维异质结。最后该综述总结了拉曼光谱在表征石墨烯基光电器件方面方面的应用,这些器件包括石墨烯基场效应晶体管、石墨烯基能量存储器件、石墨烯基太阳能电池和有机光发射二极管、石墨烯基纳米电 - 力系统、石墨烯基范德华二维异质结。该综述论文对于从事石墨烯相关领域研究和应用的科研和技术人员都具有非常重要的参考价值。

相关报告
  • 《半导体所等撰写二维材料低频剪切模和呼吸模拉曼散射的综述论文》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-11-24
    • 近十年来,二维材料的蓬勃发展可谓日新月异,其种类从半金属(比如石墨烯)到半导体(比如过渡金属二硫化物)到绝缘体(比如六角氮化硼)都有涵盖。相比块体的材料,二维材料表现出许多的独特的优异性质,比如说单层石墨烯中电子的迁移率要远大于其母体材料石墨;对于单层的二硫化钼 ( MoS 2 ) 来说,晶格中心反演对称性的破缺使得谷自旋效应得以实现,而层间耦合的消失使其从母体的间接带隙半导体变成单层的直接带隙半导体。同时,许多二维材料的性质是由其层数决定的,比如 BP, InSe 的带隙随着层数连续可调。而这种层状的结构也决定了这些材料可以有不同的堆垛方式 ( 2H,3R,Twisted - 上下两层存在某个旋转角度堆垛 ) ,甚至可以将两种不同的材料以任意的角度进行堆垛。这些不同的堆垛方式又为二维材料增添了许多新的奇异的性质。而这些奇异的性质和层状材料之间的耦合作用密切相关的。拉曼光谱作为一种对样品无损害的,快速的光学方法,已经在二维材料的层数确认,堆垛方式,层间耦合等方面的研究被广泛应用。最初的研究主要是集中在高频拉曼模式上,这些高频模式反映的是层内原子间的相对振动,主要是由层内连接原子的化学键提供的回复力而不是由层与层之间的范德瓦尔斯作用力决定。因此,高频的拉曼模式对层间耦合作用不敏感,极大地限制了它们在准确的确认层数以及堆垛方式等方面的应用。而低频的剪切模和呼吸模反映的是单个层数作为一个整体,层与层之间的一个相对振动,剪切模和呼吸模分别是沿着平面的振动和垂直平面的振动。这些低频模式基本是由层间的范德瓦尔斯作用来决定的,从而使得这些低频模式在确定层数,堆垛方式等方面具有很大的优势。实际上,低频的剪切模和呼吸模已成功在石墨烯,过渡金属二硫化物以及各向异性的 BP,ReS 2 等二维材料的层数确认,层间耦合,堆垛方式等研究上得到应用。同时在二维材料垂直异质结的堆垛方式,层间耦合等研究中也得到广泛应用。 最近,中国科学院半导体研究所谭平恒研究员,张俊研究员和美国 伦斯勒理工学院的 Vicncent 教授以及美国橡树林国家实验室的 Liangbo Lian g 教授等合作, 撰写了关于二维材料低频剪切模与呼吸模在层数确认,层间耦合研究以及堆垛方式指认等方面的综述论文,目前已被美国化学学会旗下期刊 《 ACS Nano 》在线发表( http://dx.doi.org/ 10.1021/acsnano.7b06551 ) 。Liangbo Lian g 博士 、张俊研究员为该论文的共同贡献第一作者,谭平恒研究员和 Vicncent 教授为共同通讯作者。 该综述论文系统地总结了低频剪切模和呼吸模在表征二维材料的层数、层间耦合以及不同堆垛方式等方面的最新进展研究,分别从实验和理论两方面对二维材料低频振动模式的应用和对称性等方面作了详细的归纳解释。这些二维材料包括各向同性的石墨烯,过渡金属二硫化物等,各向异性的 BP , ReS 2 等,以及垂直堆垛的异质结材料等。最后,作者们还从实验和理论两方面对低频剪切模和呼吸模后续的研究和应用作了进一步展望。该综述论文对从事二维材料领域研究和应用的科研和技术人员都具有重要的参考价值。
  • 《重磅综述:石墨烯导电材料在透明电极中的应用进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-05-15
    • 作为光电器件中的核心部件,透明电极在发光二极管(LED)、液晶显示器(LCD)及有机太阳能电池等方面应用十分广泛,通常要求其在550nm下可视光源穿透率在80% 以上,面阻抗为1000Ω/sq 以下或者满足1000S/m 的电导率。 透明电极应用在多个方面,包括触摸屏,太阳能电池,智能窗户玻璃,液晶显示器,有机发光二极管等。随着各行各业的迅猛发展,透明电极的性能也面临着越来越高的挑战,既要求高透光率,同时还要求低电阻。与此同时,对于材料本身的机械强度、耐化学性、耐热性以及功函数都有极高的要求。而石墨烯作为优良的导电材料,其综合性能恰能应电子行业发展的需求。因此,其在透明电极领域的应用必然具有广阔的发展前景。 1石墨烯概述 英国科学家在2004 年利用简单的胶带微机械剥离的方法,成功的由石墨获得了完美的单层石墨烯,并且测试出优异的电学性能。 二维六角蜂窝状晶格这种独特的结构使石墨烯具有拥有室温量子霍尔效应特性。之所以将石墨烯称为优秀的导电材料,一方面,是由于它的导电率达到了106s/m,这种新型的二维碳纳米材料具有极快的电子传输速度,甚至可以达到光速的三百分之一,这种速度是远远高于其他半导体材料的。与此同时,石墨烯还具有高出半导体硅一百倍的迁移率,高达2×105cm2/V·s。 2石墨烯在透明电极中的应用现状 石墨烯作为典型的碳家族材料,具有超高的电子电导率、理想的电容储能和对光透明的特性,在构筑高性能透明导电薄膜(TCE)和柔性透明超级电容方面等方面具有很大潜力。 2.1 在太阳能电池中的应用 2009 年,Li 等研发了一种新型的太阳能电池结构,该结构采用石墨烯作为电极的阳极,并与硅半导体结合,形成了石墨烯- 硅肖特基结太阳能电池结构,其具体结构图,如下如图3 所示。在Si/SiO2 基片上,覆盖有一层很薄的石墨烯,并且在石墨烯薄膜上方,有约0.1-0.5cm2 面积的硅层窗口,四周以金线作为栅。 近年来,在硅基太阳能电池领域出现了一种新型技术,即以聚三氟甲磺酸胺(TFSA)为掺杂剂对石墨烯进行掺杂,该种电池就是将掺杂有TFSA 的石墨烯转移到Si 底层上制备而成的,该技术使电池效率从1.9% 上升到8.6%,从而大大提高了光电池的转换效率。 后来,Enzheng Shi 等以二氧化钛作为抗反射涂层来使电池达到减少光反射,增强光吸收的效果,进而将光电转换效率提高至14.1%。尽管如此,但与传统的ITO 相比,其效率仍有差距。 2.2在显示器中的应用 目前市面上液晶显示器中常用的ITO,其透过率在90% 左右。与之相比,单层石墨烯的优势在于低至2.3% 的可见光吸收度,其透明度比于ITO 的90% 高出7.7%。虽然透过率7.7% 的提升给人的视觉不会带来较大影响,但由于上述提到的ITO 的局限性,也使得石墨烯在透明电极领域的发展成为可能。 Peter Blake 等人成功制备石墨烯作为透明电极的液晶显示器,首先使用机械剥离法在玻璃片上制备石墨烯薄膜,在石墨烯薄膜周围喷涂5m m 铬和50nm铜,再依次在表面添加40nm 取向膜、20μm 液晶、40nm 取向膜、ITO 以及玻璃片。添加电场横穿液晶层打乱其排列,从而改变显示器的有效双折射和光传输强度。最强和最弱输出光的对比度大于100。此研究结果也为石墨烯应用于液晶显示器的研究提供了基 础。 2.3在触摸屏中的应用 石墨烯在触屏领域的应用研究国家有中日韩英美等国家。在欧美地区,以美国的辉锐科技为代表,已经进军大面积石墨烯柔性版触控屏市场,并计划未来3年内应用于手机、平板以及便携设备显示屏等。在韩国,石墨烯的应用研究也受到了政府的高度重视。2010 年,韩国著名的三星集团与国内某一科研院所的研究人员合作,成功的以63mm 的柔性透明玻璃纤维聚酯板为基材,研制出纯石墨烯,其大小近似于电视机,柔性触屏也在此基础上成功的问世。在日本,产业技术综合研究所发布了以卷对卷方式合成宽度为594mm 的石墨烯薄膜装置。该研究所采用以微波等离子技术,利用300-400℃的低温CVD 法合成石墨烯的方法;此外,东芝和松下也先后制备了大面积石墨烯薄膜和厚度只有10μm 的石墨烯散热膜。在我国,常州二维碳素研发团队突破了石墨烯薄膜应用于中小尺寸手机的触摸工艺,实现了薄膜材料 和ITO 模组工艺线的对接。业内专家表示,如果实现了石墨烯薄膜工艺线与现有ITO 模组工艺线对接,必将加速实现石墨烯薄膜材料在触控显示领域的产业化。 2.4 在OLED 中的应用 Tae–Hee Han 等人用化学气相沉积法与AuCl3掺杂相结合的方法,制得高性能的CVD 石墨烯,其性能可以与ITO 相媲美。通过掺杂,石墨烯表面的电阻率有明显的降低,同时工作能也由4.4eV上升到5.95eV,从而解决了石墨烯与有机半导体膜层之间的孔穴注入障碍[。通过阳离子刻蚀,对石墨烯进行图案化处理,而后在表面蒸镀有机半导体膜层以及金属电极,成功制备OLED。该研究也使得石墨烯在柔性OLED 领域的应用成为可能。 ZDNet、韩国先驱报(Korea Herald)2017 年4 月11 日报导,韩国电子通讯研究院跟Hanwha Techwin合作,以石墨烯制作厚度不到5 奈米的透明电极,开发出一款370mm×470mm(相当于19 吋屏幕)的OLED面板,为业界首见。这也使得石墨烯透明电极在有机发光领域的推广成为可能。 3结论 随着电子行业的迅速发展及全球能源危机的不断加重,石墨烯导电材料的研究和开发具有重要意义。近年来,石墨烯在透明电极中的研究和使用取得了很大的进展,但也存在着不足:(1)对材料的微观理论认识不够,导致理论值和实际值不相符;(2)采用化学方法制备透明材料时,受基底和反应条件的限制,无法实现氧化石墨烯的高度还原;(3)材料的制备方法不够完善,制备成本过高;(4)以PET 为基材制备复合材料时,其经济、环保型有待探讨。因此,距离实现石墨烯在该领域的产业化,还有很长的路要走。 未来,在石墨烯导电材料在透明电极中的研究,以下几点将成为研究重点:(1)如何改善柔性基底材料,一方面解决环保问题,另一方面对降低因基底性能对还原条件的限制,提高氧化石墨烯的还原比例;(2)如何减低生产成本,提高生产效率;(3)如何提高石墨烯导电材料的柔性。 .