《材料学家利用激光技术制备微小,弯曲的碳纤维面》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-04-19
  • Jena材料学家首次成功制备出了具有激光诱导周期结构的强弯曲面,这种结构也可以用于表面着色。来源: Jan-Peter Kasper/FSU Jena

    材料的表面对其功能具有巨大的影响。如果外表面的性质发生改变,可能会扩大材料的应用范围。这正是Friedrich Schiller大学(德国)的材料科学家们研究如何使用激光技术调整不同材料表面的原因。他们主要关注点在于激光诱导产生周期性表面结构,也称为LIPSS。LIPSS是极其微小的结构。他们在国际知名顶级期刊Carbon上报道了在这领域中所取得的成就。

    耶拿大学Otto Schott材料研究所的StephanGräf博士解释道:“当用飞秒激光器(一种具有极短而强的光脉冲的激光器)照射表面时,在激光束照射表面的点处会形成一种特征结构,而正是在这个焦点处的干扰作用产生了LIPSS。”因为普通的激光束不能聚焦到所需要的那么小,所以这些特征结构远小于使用正常激光技术所能达到的结构。除其他参数外,结构的大小还取决于所使用的激光强度和激光波长。在对激光束参数进行仔细调整的基础上,几乎可以“量身定做”所需的结构。与此同时还可以利用激光束扫描整个表面来获取大面积的周期性图案。

    目前在强弯曲面上的应用

    一般来说,这种方法适用于多种不同的材料。然而到目前为止它还只能应用于平面上。但现在耶拿材料学家成功地制备出了具有激光诱导周期结构的强弯曲面。Gräf博士说道:“我们已经在大约10微米的薄碳纤维表面上制备出了直径并不比结构本身大的LIPSS。此外,我们还能叠加不同类型的结构从而分层次地形成表面。”

    目前的这些发现将为实际应用提供全新的可能性。例如,可以将碳纤维嵌入到其他材料中(比如某些聚合物)用来制备复合材料,再利用化学处理的方式来提高复合材料的强度。利用LIPSS可以准确改变它们的表面形貌,这样就可以在聚合物和嵌入的纤维之间进行锚定。

    更耐用的材料

    此外,该结构还可用作光学衍射光栅。它能让光在表面上的反射和吸收行为能够以一种特定的方式发生改变,同理也适用于光的衍射行为。而且基于所谓的“结构色”理念,以后可以有选择性地设计表面的颜色。因此,激光诱导的周期性表面结构越来越受到光学应用领域的关注。

    耶拿大学的材料学家Gräf博士还说道:“通过改变表面形貌可以减少摩擦系数,从而防止磨损。比如可以用这种方式开发更耐用的医用植入物。”此外,可以通过这种方式改变材料的润湿性,因此可以设计成更具疏水性或亲水性的材料。

    文章来自phys网站,原文题目为原文标题为Material scientists shape the surface of tiny, curved carbon fibres using laser structuring

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=171614
相关报告
  • 《从6小时到100秒:美国科学家研发超高效碳纤维复合材料打印技术 》

    • 来源专题:智能制造
    • 编译者:icad
    • 发布时间:2025-07-23
    • 2025年5月,科罗拉多州立大学和亚利桑那州立大学的研究人员成功开发出一种革命性的增材制造方法,可快速制造高性能碳纤维增强热固性复合材料。这项发表在 Nature Communications期刊上的研究,展示了通过原位光热转换实现即时固化,彻底改变了复合材料的生产方式。 研究通讯作者Mostafa Yourdkhani教授表示:"我们的技术消除了传统复合材料制造中的主要瓶颈——昂贵的模具和耗时的热固化过程,这为航空航天和汽车工业的轻量化结构部件制造开辟了新途径。" 创新技术原理 此方法巧妙结合了热响应性二环戊二烯(DCPD)树脂与安装在机器人平台上的低功率蓝色激光。当激光照射到碳纤维上时,纤维能在200毫秒内吸收光能并转换为热能,将温度迅速提高到220-240°C,使周围的树脂立即固化。这一过程不仅可以在固体表面上进行,还能在空中实现自由成形打印。 传统制造工艺中,模具成本可能占最终产品成本的30%以上,并且需要长达6小时的烘箱固化,此项技术可以在100秒内完成一个双层复合支架的打印,能耗仅为传统方法的0.01%。 研究团队证明,通过这种方法制造的复合材料在机械性能上与传统固化的样品相当,具有相似的弯曲模量和玻璃化转变温度(约160°C)。在连续纤维复合材料中,碳纤维体积分数高达70%,而孔隙含量低至0-1.5%,表明打印质量极高。 打印速度可达1.5米/分钟,研究人员表示,如使用更高功率的激光,速度还可进一步提高。此系统能在不同表面之间连续打印长达1.8米的结构,为大型复杂形状的复合材料结构制造提供了可能。 研究成员表示:"我们的方法不仅适用于碳纤维,初步测试表明芳纶纤维也能取得良好效果,这意味着该技术具有广泛的适应性,可用于各种增强纤维和几何形状。" 行业应用前景 这项研究为高性能复合材料制造领域带来了重大突破,有望在航空航天、汽车、船舶和能源等行业找到广泛应用。研究人员计划进一步优化工艺参数并探索更多材料组合,以满足不同行业的具体需求。
  • 《科学家设计出新型智能可扭曲、弯曲和愈合的有机晶体多功能材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-22
    • 所有的晶体特性都是脆性和非弹性的吗?一种新型的智能可弯曲的晶体有机材料对这一观点提出了挑战。现在,科学家们已经设计出了一种分子软共晶结构材料,这种材料在高温、机械力或紫外光的刺激下可以进行可逆地弯曲和扭曲而不会分裂。正如作者在Angewandte Chemie杂志上报道的那样,这种多功能性质使其成为先进分子电子学和其他新材料的候选材料。 晶体结构可以很有弹性。这个概念是在十年前第一个动态和适应性分子晶体被报道后才出现的。能够弯曲而不分裂的晶体材料在微机器人、柔性电子器件和光学设备中都十分有吸引力。现在,由印度Meghalaya国家技术研究院的Naba Kamal Nath和阿拉伯联合酋长国阿布扎比纽约大学的Pan?e Naumov领导的一个科学家小组将单晶的界限推向了一个更高的位置。他们开发了一种分子软晶体,它分别在加热和冷却时扭曲和解开,在紫外线下进行可逆地弯曲,并在机械力的作用下发生变形和改变。此外,科学家指出,晶体中的裂纹可以通过热循环自行愈合。 分子有机晶体的结晶性来源于分子层的堆积。这些层是通过分子间的相互作用(如氢键、疏水作用或芳香环间的相互作用)保持在适当位置的。Naumov和Nath制备的晶体含有两种不同的分子,一种是用于增加尿酸排泄的药物化合物丙磺舒,另一种是4,4'-氮杂吡啶,它是一种杂芳族偶氮化合物,当用紫外光照射时会从伸长状态变为更加弯曲的构象。由这两种分子形成的单晶体由层叠的二维层组成,呈纵横排列。 作者发现,加热使这种结构发生了相变,轻微的重排形成了不同的堆积角。长而薄的结晶纤维片扭曲,但不是永久的,冷却会使其恢复原来的分子顺序,使板材再次变直。此外,机械弯曲可能不会造成其开裂,并且在紫外光照射下会引起快速、可逆的弯曲。 该材料不仅结合了加热可逆扭曲、机械力引起的弹性弯曲和紫外光作用下的快速、可逆弯曲三种功能,而且还能自行愈合。作者报道,当晶体在室温和高温之间循环时,裂缝和小裂纹会消失。 这些效应意味着有机晶体有着显著的多功能性。因此,它被认为是用于下一代固态半导体、柔性电子学和其它技术中的有用材料,人们希望同时实现看似矛盾的力学性能。