《 科学家发现媲美自然光合作用的单核锰催化剂》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-10-16
  • 将清洁的太阳能转化为可储存、可运输的燃料,是当今科学界“圣杯”式的难题。科学家曾提出“液态阳光”(即“太阳燃料”)的构想,以应对未来化石燃料枯竭的能源需求和气候变化。10月16日《自然—催化》发表的一篇论文显示,中国科学院大连化学物理所研究员、中国科学院院士李灿团队发现了一种可与自然光合作用催化剂活性相媲美的单核锰催化剂,为实现“液态阳光”构想迈出关键一步。

    光合作用中,植物利用太阳能将水裂解释放氧气、为生物合成提供电子和质子,并进行光合反应,这是人类梦寐以求的能源转化过程。不久前,《焦耳》杂志发表了中国科学院院长、中国科学院院士白春礼等作者的文章,提出“液态阳光”的倡议,指出实现液态阳光关键在于将太阳能转化为稳定、可储存、高能量的化学燃料,这应该引起科学界重视。其中,水氧化是自然光合作用和人工光合成的原初反应,实现“液态阳光”的关键在于开发高效稳定的水氧化催化剂。

    李灿告诉《中国科学报》记者,自然光合作用水氧化反应的催化剂是一个多核锰的化合物,由四个锰离子和一个钙离子及多个氧原子组成,催化活性为每秒钟发生化学反应次数(TOF)为100至400次之间。

    长期以来,科学家沿着这一思路寻找模拟自然光合作用的多核锰催化剂。李灿团队也不例外。“一开始,我们并没有预测到单核锰催化剂会具有如此高的催化活性。”李灿坦言。

    研究人员将含锰的氧化物纳米颗粒固定在作为基体的氮化石墨烯上,在基体上逐步分散纳米颗粒,并测量其在不同分散程度下的催化活性。他们意外地发现,纳米颗粒尺寸越小,水氧化活性越高。

    “按照这个思路,我们继续分散纳米颗粒,直至到单核尺度,其水氧化活性突跃上升到每秒钟发生化学反应200次以上。”李灿指出。这是目前报道的多相催化剂水氧化最高的活性,也达到了自然光合作用水氧化多核锰催化剂的水平。

    李灿同时表示:“这是我们在长达18年里围绕人工光合成关键科学问题的攻关取得的阶段性成果。”自2001年起,他带领的科研团队致力于人工光合成太阳燃料研究,在太阳能光催化、光电催化和电催化分解水制氢,以及二氧化碳加氢制甲醇等方面取得了进展,研发了系列具有自主知识产权的相关专利技术。今年7月,该团队在兰州新区成功启动千吨级液态太阳燃料生产示范工程,标志着我国真正意义上开始了大规模液态太阳燃料生产过程的实践。

    李灿说,未来,此次发现的单核锰催化剂有望在该示范工程中应用。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=303578
相关报告
  • 《科学家开发新型燃料电池催化剂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-10-29
    • 阻碍环保氢燃料电池广泛应用于汽车、卡车和其他车辆的一个因素是铂催化剂的成本。 使用不太贵重的铂的一种方法是将其与其他较便宜的金属结合使用,但这些合金催化剂在燃料电池条件下往往会迅速降解。 现在,布朗大学的研究人员已经开发出一种新型合金催化剂,既能减少铂的使用,又能在燃料电池测试中保持良好的性能。 据《焦耳》杂志报道,这种催化剂由铂合金和纳米颗粒中的钴制成,在反应性和耐久性方面都超过了美国能源部(DOE) 2020年的目标。 “合金催化剂的耐久性是该领域的一个大问题,”布朗大学化学研究生Junrui Li说。 “研究表明,合金最初的性能比纯铂要好,但在燃料电池中,催化剂的非贵金属部分会很快被氧化和过滤掉。” 为了解决这个浸出问题,Li和他的同事开发了一种特殊结构的合金纳米颗粒。 这些粒子有一个纯铂外壳,围绕着一个由铂和钴原子交替层构成的核心。 布朗大学(Brown)化学教授、该研究的资深作者Shouheng Sun表示,这种分层的核心结构是催化剂反应性和耐久性的关键。 “内核中原子的分层排列有助于平滑和收紧外壳中的铂晶格,”Sun说。 “这增加了铂的反应性,同时也防止了钴原子在反应过程中被吃掉。这就是为什么在金属原子随机排列的情况下,这些粒子比合金粒子表现得更好。” 关于有序结构如何增强催化剂活性的细节在焦耳论文中有简要描述,但更具体地说,在发表在《化学物理杂志》上的另一篇计算机建模论文中。 这项建模工作由安德鲁·彼得森(Andrew Peterson)领导,他是布朗工程学院的副教授,也是焦耳论文的合著者。 为了进行实验工作,研究人员测试了催化剂的能力来执行氧还原反应,这对燃料电池性能和耐久性是至关重要的。 在质子交换膜(PEM)燃料电池的一侧, 从氢燃料中剥离出来的电子会产生驱动电动机的电流。在电池的另一端,氧原子吸收这些电子来完成一个循环。 这是通过氧还原反应完成的。 初步测试表明,该催化剂在实验室环境下表现良好,优于更传统的铂合金催化剂。 新催化剂在3万次电压循环后仍然保持活性,而传统催化剂的性能明显下降。 但是,尽管实验室测试对于评估催化剂的性能很重要,研究人员说,它们并不一定能显示催化剂在实际燃料电池中的性能。 与实验室测试环境相比,燃料电池环境温度更高,酸度也不同,这将加速催化剂的降解。 为了弄清楚这种催化剂在这种环境下能维持多久,研究人员将这种催化剂送到洛斯阿拉莫斯国家实验室,在一个实际的燃料电池中进行测试。 测试表明,该催化剂在初始活性和长期耐久性方面都优于美国能源部(DOE)设定的目标。 美国能源部要求研究人员开发催化剂,到2020年,其初始活性为每毫克铂0.44安培,在3万次电压循环(大致相当于燃料电池汽车使用5年)后,其活性至少为每毫克铂0.26安培。 对新催化剂的测试表明,它的初始活性为每毫克0.56安培,在3万次循环后的活性为每毫克0.45安培。 “即使经过了30000个循环,我们的催化剂仍然超出了能源部最初的活性目标,”Sun说。 “在真实的燃料电池环境中,这种性能真的很有前途。” 研究人员已经申请了催化剂的临时专利,他们希望继续开发和完善它。
  • 《让二氧化碳高效变身工业原料 分子工程帮助科学家找到最好催化剂》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-25
    • 能源短缺和全球变暖已成为人类面临的两大难题。由于化石能源的过量使用,一方面人类赖以生存的传统化石燃料正消耗殆尽;另一方面大气中二氧化碳(CO2)浓度升高,导致全球的温室效应,给地球带来了不可逆的生态环境问题。若利用可再生能源将CO2转变成工业燃料,既解决了其在大气中浓度过高的问题,也缓解了新能源替代化石能源短缺的迫切需求。 CO2电催化还原为碳基燃料和化工原料被科学家认为是一种重要的潜在技术途径。然而,目前CO2还原电催化剂性能不足和系统成本高昂制约了该技术的应用。如何设计高效的催化剂,以提高反应的能量转换效率以及产物选择性是亟待解决的重要问题。 南方科技大学材料科学与工程系教授梁永晔团队、化学系副教授王阳刚团队与合作者共同发展了分子分散电催化剂的体系以及分子工程调控方法,构建了基于金属酞菁的高性能CO2还原电催化剂,使得一氧化碳(CO)产物选择性在大电流密度下接近100%,接近工业CO2还原的要求。相关研究成果日前在线发表于《自然—能源》。 寻找最佳催化剂 自19世纪末期以来,大气中CO2的浓度已从280ppm增加至目前的400ppm,探索有效消耗CO2并将其高效转化为人类可用之物的技术,成为全球科学家关注的重点。 CO2电催化还原,可以使用来自可再生能源的电能,在常温常压的反应条件下,将CO2一步转化为如CO、碳氢化合物等高附加值碳基燃料及化学品,被认为是非常有前途的技术方法。 “将CO2还原为重要的工业原料CO是相对较成熟的技术,目前反应选择性与能量转换效率较其他产物的转化高。但实际应用中,仍需要解决大电流密度工作条件下的催化剂产物选择性以及稳定性问题。”论文通讯作者之一梁永晔告诉《中国科学报》。 在CO2电催化还原的应用中,催化剂是关键环节,其必须具有高的选择性、低的过电位和好的稳定性,才能高效地产生有价值的碳基产品。近年来,CO2还原电催化剂是一个研究热点,并取得了诸多研究进展。 梁永晔介绍,目前较好的催化剂包括基于贵金属如金、银的材料,以及单原子电催化剂等,但还存在诸多不足,比如催化剂成本过高而难以广泛应用、材料结构复杂、选择性不够理想等。 最近,诸如酞菁钴(CoPc)等金属大环配合物分子被发现可作为催化剂在气体扩散电极下将CO2转化为CO。“但在大电流下,它们的稳定性较差。此外,对单原子催化剂以及金属大环配合物催化剂的结构与催化性能关系认识不足,制约了催化剂性能的优化。”梁永晔说。 针对这些问题,梁永晔团队前期研究发现,酞菁钴—碳纳米管(CoPc/CNT)的复合催化剂展现出了比纯CoPc分子更高的CO2还原催化性能,而且这种复合方法还可揭示一系列MePc(Me = Mn,Fe,Co)分子的本征活性,大大提高了CO2还原成CO的电催化性能。 这一次,梁永晔团队在过去的基础上,有了新的探索发现。 接近工业要求的理想催化剂 纯金属大环配合物的CO2还原电催化剂存在分子导电性差、易聚集等问题,制约了其催化性能;而热解制备的单原子催化剂结构复杂、难调控,也限制了此类催化剂的研究。 基于以上现状,梁永晔团队首先通过将金属大环配合物分子级分散于导电碳纳米管上得到分子分散型电催化剂(MDE),双球差电镜表征揭示其结构与单原子电催化剂类似。具有明确Ni—N4结构的酞菁镍(NiPc)分子MDE对CO2还原为CO具有高选择性,催化活性和选择性要优于Ni单原子催化剂和聚集型的NiPc分子。 “但在应用时,我们发现该催化剂稳定性较差。”梁永晔说,为此,他们进一步使用分子工程手段,通过在酞菁(Pc)上引入不同的取代基来调控其催化性能。 研究发现,引入吸电子特性的氰基(CN-)取代可提高其活性,但稳定性仍然不好。而引入给电子特性的甲氧基(OMe-)取代则可有效提高稳定性,并可进一步改善其选择性,实现近乎100%的CO选择性。 接着,研究人员继续将催化剂应用于气体扩散电极装置进行测试,发现NiPc-OMe MDE在还原电流密度在10~300mA cm-2范围内的CO产物选择性可达到99.5%以上,且在150mA cm-2的还原电流下能稳定工作40小时。 “这样的结果接近工业CO2还原的要求,具有产业化的前景。”梁永晔表示。 机理揭示将指导相关电催化剂优化 为找到现象背后的科学原理,梁永晔与王阳刚团队、俄勒冈大学教授冯振兴团队进行合作,进一步结合理论计算和原位同步辐射表征,深入揭示了取代基调控催化性能的机理。 研究发现,具有Ni-N4结构的酞菁镍分子分散型电催化剂(NiPc MDEs)的CO2还原起峰电位与Ni中心的部分还原紧密相关,而不简单取决于理论计算中的反应能垒。CN-取代可以使分子更容易被还原,因此具有更正的起峰电位。此外,OMe-取代可以提高催化过程中Ni-N键强度以及促进CO中间体脱附,从而提高了催化稳定性。 机理的揭示也将为相关电催化剂的设计与优化提供指导。 “目前测试的电流密度以及工作时间受到器件工艺的限制,仍需进一步优化其测试条件,以测试在更大电流密度以及更长工作时间下的性能。”梁永晔说,下一步他们将继续优化催化剂设计,实现更高的催化活性,并进一步探索制备其他还原产物的条件。同时,加强在实际应用器件中的研究,推动此类催化剂的应用。 相关论文信息:https://doi.org/10.1038/s41560-020-0667-9