人为温室气体排放以前所未有的速度加速气候变化,全球平均气温节节攀升。德国认为在本国及全球范围内持续、迅速地大幅减少温室气体排放,仍然是气候保护的首要任务。因此,德国政府在《气候保护法》中制定了宏大的减排目标。到2030年,德国的排放量应该比1990年减少至少65%,到2040年减少至少88%,到2045年应实现净温室气体中和,到2050年后应实现净负温室气体排放。
然而,全球温室气体减排目标无法从根本上遏制全球变暖趋势,以实现巴黎气候协议目标。负排放已经成为实现巴黎气候目标的必要条件,在多个国家气候法规中得到体现:丹麦计划到2050年将排放量减少110%,相对于1990年;根据英国的“零净排放战略”,从2030年开始,技术吸收二氧化碳至少5百万吨/年;瑞士二氧化碳吸收和储存技术是其2050年长期气候战略的重要组成部分;美国通过“负碳攻关计划”推动开发能够在2050年实现千兆吨级二氧化碳吸收的方法和技术;欧盟将在制定2040年欧盟气候目标和明确的负排放技术。
德国发布战略《负排放长期战略》(Langfriststrategie Negativemissionen zum Umgang mit unvermeidbaren Restemissionen,LNe)并指出,德国政府尚未制定一项全面而长期的负排放战略计划,现有的德国政府气候保护计划尚未系统地涉及负排放重要性。通过负排放长期战略LNe,将对德国气候政策中负排放进行全面考虑,并确定2035年、2040年、2045年的技术目标和净负温室气体排放目标。
战略提出了德国负排放重点技术目标:
(1)森林和初次造林
森林通过光合作用将大气中的CO2转化为生物质并储存,是全球重要的自然碳汇。森林是德国目前最大的CO2汇,2022年德国的森林净吸收了约4300万吨CO2。
(2)沼泽地
在德国,沼泽地主要被用于农林业和泥炭开采,再利用过程中的排水效应会导致泥炭分解释放了大量的CO2,因此沼泽泥炭土壤排水是的德国温室气体排放源之一。农业沼泽用地再湿化恢复其吸碳功能可以减少沼泽温室气体排放。
(3)土壤
土壤生物、植物根系以及腐殖质中储存了大量的碳。为了实现额外的碳储存,可通过完善土壤管理、改善土壤功能、建立新的腐殖质碳流动平衡增加土壤腐殖质,实现CO2增储负排放功能。此外,土壤腐殖质增加还有利于改善土壤肥力、土壤健康和气候适应性。
(4)生物质
植物吸收大气中的CO2时形成生物质是一种自然负排放模式。主要包括:①海洋生物质如海草床、藻类森林等,生长中需要大量光合作用,可以消耗海水中大量的溶解CO2。通过保护和恢复海草床、盐沼泽、藻类森林,可以增强自然的CO2储存能力;②生物质的物质利用,例如将木材应用在建筑、绝缘材料和其他耐久产品中,可以延长碳在生物质中的储存时间,并在产业链中循环流动;③生物炭,通过热解碳化植物原料的碳可以长期储存为生物炭,储存时间根据生物炭的使用形式而异;④带二氧化碳捕集、利用和储存的生物能利用(BECCU/S),植物生物质在发电厂、热电厂、沼气厂或工业生产中,释放的大量碳被捕、集储存在地下地质储层中,或者以二氧化碳或甲烷的形式用于产品制造。
(5)通过CO2捕集、储存、利用进行热废物处理(Waste Carbon Capture, Utilisation and Storage, WACCU/S)
价值链末端废物热处理,产生热能和电力释放大量CO2。捕集热处理过程中产生的碳排放,并二次利用存储固碳,可做为负排放技术。
(6)直接从空气中捕集CO2并储存或利用(Direct Air Carbon Capture, Utilisation and Storage/Sequestration, DACCU/S)
通过直接从空气中捕集CO2并储存利用,将CO2从设备中分离并储存在地下地质储层中或用于产品再生产。
(7)碳捕获和利用(CCU)
将大气中的CO2永久地固定碳酸钙中实现负排放。
(8)风化加速固碳
通过对含水泥产品或硅酸盐岩石加速风化,将CO2固定为矿物质物质(碳酸盐),并将其应用到建筑业,植入土壤或海洋中,永久地从大气中去除。
《负排放长期战略》认为负排放在德国扮演着重要的双重角色。