《中国科学院海洋研究所发现SWOT干涉测高卫星在地球重力场反演中的巨大潜力》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2024-09-13
  • 海面高度蕴含着地球重力场变化的信息,耗资12亿美元的美国新一代干涉测高卫星SWOT,让人类首次具备了观测亚中尺度海面高度异常(SSHA)的能力。海洋所徐永生团队通过分析SWOT观测数据,发现该卫星能显著提高地球重力场的反演分辨率,展示了其揭示地球内部结构及其变化的巨大潜力。这一成果近期在国际学术期刊 IEEE Geoscience and Remote Sensing Letters发表。

    静止的海面会沿着地球重力场的等势面分布。因此,任何导致重力场变化的因素,如海底地形(包括海山和海沟)、海水深度变化、地球内部结构变化(如地幔对流和板块运动)、海底地震和火山活动等,理论上都可以通过精确测量海面高度变化来推断。由于这些因素只会引起微小的地球重力场变化,因此提升测高卫星的观测分辨率至关重要。徐永生团队通过与船载重力场测量结果对比验证发现,SWOT卫星在分辨小尺度重力场变化方面表现出优于传统雷达高度计的卓越性能。这一成果意味着SWOT将为人类带来更多关于海洋深处的科学发现。

    卫星高度计通常位于距离海面约1000公里的轨道上,提升海面高度观测分辨率是其面临的最大挑战。传统雷达高度计卫星不仅分辨率低,还只能沿轨道进行一维高度测量,极大地限制了其重力场反演能力。SWOT卫星突破了这一局限,创新地将干涉技术(通常用于探测微观世界)应用于太空卫星,实现了海面高度变化的宽刈幅三维高分辨率测量,分辨率比传统雷达高度计提高了一个数量级。这一突破性进展在科学和实践上具有极其重要的意义,标志着新一代海洋遥感时代的开启。目前,我国尚未拥有面向实际应用的海洋干涉测高卫星。SWOT卫星的成功经验将为我国在这一领域的探索提供宝贵借鉴和启示。

    文章第一作者是徐永生研究员指导的联培博士后王建波,徐永生为通讯作者兼共同第一作者。研究获得了国家自然科学基金、崂山实验室科技创新等项目支持。

    文章信息:

    https://ieeexplore.ieee.org/document/10605836?source=authoralert

  • 原文来源:https://qdio.cas.cn/2019Ver/News/kyjz/202408/t20240809_7261354.html
相关报告
  • 《中国科学院海洋研究所在海洋障碍层结构反演重构方面取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-10-12
    • 近日,中国科学院海洋研究所尹宝树研究团队与美国加利福尼亚大学洛杉矶分校(UCLA)的学者携手合作,针对海洋障碍层结构反演重构方面取得新进展,研究成果在英国物理学会学术期刊Environmental Research Communications上发表。 海洋障碍层位于海洋的密度混合层底部与温度等温层顶部之间,其厚度变化对海洋的垂直混合过程产生直接影响,进而调控海表温度和海-气交互作用。障碍层的变化会影响热量和盐分在海洋内部的输运,从而对局地天气气候产生影响,包括热带气旋的生成和强度、降水模式的变化,以及更大尺度的气候现象如厄尔尼诺-南方涛动(ENSO)和印度洋偶极现象(IOD)。由于观测技术的局限性,目前获取高质量的海洋障碍层结构实测数据仍然具有挑战性。因此,利用高分辨率的卫星遥感资料与实测数据相结合来反演重构海洋内部关键结构,已经成为物理海洋学研究中的一项重要课题。 尹宝树团队采用先进的元学习技术,成功集成了卷积神经网络(CNN)、门控循环单元(GRU)和人工神经网络(ANN)三种机器学习模型,提出了一种新颖的多模型集成方法,从而显著提升了海洋障碍层结构的反演精度。通过利用海表温度(SST)、海表盐度(SSS)和海表风速(SSW)等关键海表环境要素,研究团队能够准确地重构出海洋障碍层结构。这一研究成果不仅突破了传统观测技术和数值模型的局限性,更展示了机器学习,尤其是元学习在海洋学研究中所拥有的巨大潜力和广阔应用前景。此外,该研究对于我们深入了解海洋动力学、推动海洋环境变化研究,以及应对全球气候变化均提供了宝贵的支持与贡献,具有显著的学术价值和广泛的实际应用前景。 该研究得到了国家重点研发计划和国家自然科学基金共同资助。中国科学院海洋研究所齐继峰副研究员为第一作者,合作者包括美国加州大学洛杉矶分校曲堂栋研究员和中国科学院海洋研究所尹宝树研究员。 文章信息: Qi, Jifeng, Tangdong Qu, and Baoshu Yin. Meta-learning-based Estimation of the Barrier Layer Thickness in the Tropical Indian Ocean. Environ. Res. Commun. 5 091005. https://doi.org/10.1088/2515-7620/acf9e1 https://iopscience.iop.org/article/10.1088/2515-7620/acf9e1
  • 《中国科学院海洋研究所发现可燃冰是深海冷泉生态系统稳定的电容器》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-01-31
    • 近日,国际地学自然指数(Nature Index)期刊Earth and Planetary Science Letters在线刊发了中国科学院海洋研究所张鑫研究团队在冷泉生态系统研究领域取得的重要进展。研究人员利用自主研制的深海原位实验室,通过长期的深海原位实验揭示冷泉沉积物中浅表层天然气水合物(可燃冰)是冷泉化能合成生态系统繁荣稳定的缓冲器(电容器),展示出深海原位实验室在冷泉化能生态系统研究中的巨大潜力。 地球上大多数生态系统依赖光合作用,然而深海的黑暗、高压、低氧环境长期以来被认为不适宜生物生存。近年来,深海探测技术的进步揭示了以化能合成为基础的深海冷泉生态系统,重新定义了生命的边界。在冷泉区,甲烷是冷泉生物群落的主要能量来源。我们在南海冷泉区进行了多次原位实验,发现冷泉喷发虽为偶发事件,但冷泉生态系统在较长时间内保持相对稳定,与其他海域的研究结果相符。这引发了冷泉喷发间歇性与冷泉生态系统相对稳定性之间的悖论。 为解释这一悖论,张鑫团队采用了自主研制的深海原位实验室平台,在南海冷泉系统的天然实验环境中进行了原位实验。原位拉曼光谱数据显示,在冷泉喷发活动中,大量甲烷水合物迅速形成。喷发活动减弱或停止后,甲烷水合物分解释放出甲烷。深海高清视频显示,尽管冷泉喷发间断,但冷泉生物群落总体规模未见明显变化,冷泉底层水体的物理化学参数整体稳定。 海底气体流动是瞬时事件,气体在运输管道或浅层沉积物中形成水合物,甚至可能暴露在海底。我们提出了“天然气水合物电容器”概念,强调其在生物地球化学过程中的主导作用。这一动态“电容器”能够缓冲海底瞬时涌入的甲烷,并确保其更稳定地向甲烷贫化的底层水体扩散。这有助于维持生物群落接收的甲烷和硫化物通量的稳定性,从而维持繁荣稳定的冷泉生物群落。研究表明,在评估全球冷泉区生物群落与冷泉环境相互作用时,必须考虑“电容器”的关键作用,并凸显了大型动态“电容器”构成了潜在的大规模天然海底碳汇,对全球碳循环和气候变化具有潜在的影响。 论文第一作者为中国科学院海洋研究所博士研究生张雄,通讯作者为张鑫研究员,海洋所正高级工程师栾振东、副研究员杜增丰等人为文章共同作者。研究得到了国家自然科学基金、中国科学院战略性先导科技专项等项目的联合资助,以及“科学”号科考船、“发现”号ROV运维团队支持。 相关成果论文题目及发表链接如下: Xiong Zhang, Zhendong Luan, Zengfeng Du, Shichuan Xi, Lianfu Li, Chao Lian, Jianxing Zhang, Ziyu Yin, Liang Ma, Xin Zhang*. Gas hydrates in shallow sediments as capacitors for cold seep ecosystems: Insights from in-situ experiments. Earth and Planetary Science Letters, 2023, 624, 118469. https://doi.org:10.1016/j.epsl.2023.118469 Zengfeng Du, Xiong Zhang, Chao Lian, Zhendong Luan*, Shichuan Xi, Lianfu Li, Liang Ma, Jianxing Zhang, Wenzao Zhou, Xiufeng Chen, Zhijun Lu, Chuanbo Wang, Yu Chen, Jun Yan, Xin Zhang*. The development and applications of a controllable lander for in-situ, long-term observation of deep sea chemosynthetic communities[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2023, 193: 103960. https://doi.org/10.1016/j.dsr.2022.103960