《【文献】Nature Communications | Disordered-guiding photonic chip enabled high-dimensional light field detection》

  • 来源专题:光电信息技术
  • 编译者: 王靖娴
  • 发布时间:2025-08-31
  • 【内容概述】8月20日,武汉光电国家研究中心张新亮教授、余宇教授研究团队提出基于无序引导型光子芯片与神经网络的高维光场探测系统,可同时实现光的强度、宽谱以及混合全斯托克斯偏振态的综合检测。

         研究团队展示了一种创新的无序引导芯片,通过对无序分布进行精心设计,引入复杂的干涉和散射效应,将光谱与偏振信息编码为不同的多通道光强分布,基于逆向设计的引导区将输出高效收集至片上锗硅光电探测器阵列,神经网络再对多路光电流解码恢复光场信息。 图1.高维探测与成像系统工作原理示意图 实验结果表明,该芯片能够在1540-1560nm波长范围内,同时检测混合偏振状态和宽带光谱,偏振测量误差仅为1.2°,光谱分辨率高达400pm。

        此外,研究团队还展示了该芯片在高维成像中的应用,其识别性能显著优于传统单维检测方法。例如,在“苹果”图案的成像实验中,芯片成功区分了不同波长和偏振组合的目标,实现了100%的分辨准确率,而传统单维成像系统则无法分辨。该研究不仅为光学检测提供了一种高分辨率、高集成度的解决方案,并且在生物医学诊断、材料分析和光通信等领域展现出广阔的应用前景。

    (原文见附件)

  • 原文来源:http://mp.weixin.qq.com/s?__biz=MjM5MjIxNzI4Mg==&mid=2654050950&idx=1&sn=94a2cd2fc3506b6ab3b02cb7d6d2751f
相关报告
  • 《1D Topological Photonic Crystal based Nanosensor for Tuberculosis Detection》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-15
    • Skip to content Accessibility Links Skip to content Skip to search IOPscience Skip to Journals list Accessibility help IOP Science home Accessibility Help Search Journals Journals list Browse more than 100 science journal titles Subject collections Read the very best research published in IOP journals Publishing partners Partner organisations and publications Open access IOP Publishing open access policy guide IOP Conference Series Read open access proceedings from science conferences worldwide Books Publishing Support Login IOPscience login / Sign Up Close Click here to close this panel. Search all IOPscience content Article Lookup Select journal (required) Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004) Volume number: Issue number (if known): Article or page number: Nanotechnology Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing. Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications. We are proudly declaring that science is our only shareholder. ACCEPTED MANUSCRIPT 1D Topological Photonic Crystal based Nanosensor for Tuberculosis Detection LAKSHMI THARA RAGAVENDRAN1, Aruna Priya P2 and ARUNA Priya PRIYA. P3 Accepted Manuscript online 11 July 2024 ? NA What is an Accepted Manuscript? DOI 10.1088/1361-6528/ad61ec Download Accepted Manuscript PDF Figures Skip to each figure in the article Tables Skip to each table in the article References Citations Article data Skip to each data item in the article What is article data? Open science Article metrics Submit Submit to this Journal Permissions Get permission to re-use this article Share this article Article and author information Author e-mailsarunaprp@srmist.edu.in Author affiliations1 SRM Institute of Science and Technology (Deemed to be University) College of Engineering & Technology, Department of Electronics and Communication Engineering, Kattankulathur, Tamil Nadu, 603203, INDIA 2 SRM Institute of Science and Technology College of Engineering, Kattankulathur, 603203, INDIA 3 Electronics and Communication Engineering, SRM Institute of Science and Technology (Deemed to be University) College of Engineering & Technology, Kattankulathur, Kancheepuram district, arunaprp@srmist.edu.in, Kattankulathur, Tamil Nadu, 603203, INDIA ORCID iDsARUNA Priya PRIYA. P https://orcid.org/0000-0002-5612-3312 Dates Received 18 March 2024 Revised 7 June 2024 Accepted 11 July 2024 Accepted Manuscript online 11 July 2024 Journal RSS Sign up for new issue notifications 10.1088/1361-6528/ad61ec Abstract In this study, we present a nanosized biosensor based on the photobiological properties of one-dimensional (1D) topological photonic crystals (PCs). A topological structure had been designed by combining two photonic crystal structures (PC 1 and PC 2) comprised of functional material layers, Si and SiO2. These two, PC 1 and PC 2, differ in terms of the thickness and arrangement of these dielectric materials. We carried out a comparison between two distinct topological photonic crystals: one using random photonic crystals, and the other featuring a mirror heterostructure. Tuberculosis may be diagnosed by inserting a sensor layer into 1D topological photonic crystals. The sensing process is based on the refractive indexes of the analytes in the sensor layer. When the 1D-topological heterostructure-based PC and its mirror-image structures are stacked together, the sensor becomes more efficient for analyte detection than the conventional PCs. The random-based topological photonic crystal outperformed the heterostructure-based topological photonic crystal in analyte sensing. Photonic media witness notable blue shifts due to the analytes' variations in refractive index. The numerical results of the sensor are computed using the transfer matrix approach. Effective results are achieved by optimizing the thicknesses of the sensor layer and dielectric layers; number of periods and incident angle. In normal incident light, the developed sensor shows a high sensitivity of 1500 nm/RIU with a very low limit of detection in the order of 2.24E-06 RIU and a high-quality factor of 30659.54. Export citation and abstract BibTeX RIS During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record. Back to top 10.1088/1361-6528/ad61ec You may also like Journal articles Topologically protected energy-time entangled biphoton states in photonic crystals Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications Topological hybrid nanocavity for coupling phase transition Roadmap on topological photonics Electrically tunable robust edge states in graphene-based topological photonic crystal slabs Transverse angular momentum in topological photonic crystals IOPscience Journals Books IOP Conference Series About IOPscience Contact Us Developing countries access IOP Publishing open access policy Accessibility IOP Publishing Copyright 2024 IOP Publishing Terms and Conditions Disclaimer Privacy and Cookie Policy Publishing Support Authors Reviewers Conference Organisers This site uses cookies. By continuing to use this site you agree to our use of cookies. IOP Publishing Twitter page IOP Publishing Facebook page IOP Publishing LinkedIn page IOP Publishing Youtube page IOP Publishing WeChat QR code IOP Publishing Weibo page
  • 《【文献】Nature Communications | High-coherence parallelization in integrated photonics》

    • 来源专题:光电信息技术
    • 编译者:王靖娴
    • 发布时间:2024-10-05
    • 【内容概述】该研究提出了一种创新的高相干并行化策略,通过自注入锁定微梳状激光器来注入锁定分布式反馈激光器(DFB lasers),实现了在集成光子学中高相干、高功率和高电光效率的结合。研究团队利用这一策略,成功地在硅光子(SiPh)收发器上演示了超过60 Tbit/s的数据传输速率,并显著降低了相干数字信号处理(DSP)的负担。这项工作不仅展示了创纪录的60 dB芯片增益,而且实现了线宽低至10 Hz的高相干信道,整体电光效率达到19%,与先进半导体激光器相媲美。此外,该方法还减少了硬件成本,提高了能源效率,并有望推动通信、量子计算和激光雷达等多个领域的发展。这项研究为实现大规模、高性能、大容量的相干光系统铺平了道路,有望解决由于流量需求爆炸式增长带来的芯片间和数据中心间互联问题,为未来光通信网络的发展带来了新的希望。 【相关背景】由于能够同时操控光的幅度和相位,相干光学在过去十几年中成为集成光学的重要发展趋势之一,为光通信、传感、量子信息等各种应用带来了无限的可能。然而,传统方案在集成光学中构建相干系统需要在硬件和功耗方面付出巨大的代价,其中一个核心难题是光源。迄今为止,还没有一种方法能同时实现高并行性、高相干性和高功率的集成光源。虽然III-V族DFB激光器因其优异的输出功率和电光转换效率(WPE)而被广泛使用,但其本征线宽通常在100kHz水平,难以满足众多应用中的相干性要求。 为了提高相干性,通常将III-V族激光器与高品质因子微腔结合,以有效降低线宽至1kHz以下并产生光频梳。然而,这种方法牺牲了功率和每个通道的WPE。近年来发展的微腔光频梳技术可以实现单个器件的多波长产生,但其每个通道的功率通常低于-10dBm。因此,系统中通常需要增益超过30dB的放大,这对集成式掺铒光纤放大器和半导体光放大器提出了挑战,并且这两种方法都会不可避免地引入额外的噪声。集成相干系统面临的另一个挑战是巨大的DSP开销。相较于强调直检的光通信系统,相干检测需要更复杂的DSP来精确恢复频率和相位信息,这显著增加了功耗预算,因此通常需要专用的芯片进行处理。为了在下一代数据中心部署先进的相干通信系统,DSP芯片必须采用3nm制程的CMOS工艺以降低功耗。此外,复杂的DSP也使得实时数据处理变得更加困难。虽然诸如激光同步等方法已被提出用于减少对DSP的需求,但这些方法往往需要体积较大的窄线宽光源和锁相环技术,从而显著增加了系统的硬件负担。 (文献原文见附件)