《新材料助力类脑计算,探路“电子大脑”》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-07-22
  • 语音识别、图像识别、自然语言处理……近年来,源于人工神经网络概念的深度学习飞速发展,大有挑战人类唯我独尊的态势。尽管如此,很多业内人士认为,人工智能发展的终极路线,离不开在硬件上模拟人脑的“电子大脑”。

    采用传统硅基晶体管的电路来模拟人脑中的突触或者神经元的功能,不仅耗费大量硬件资源,而且执行信息处理的过程极其耗能。因此找到合适的材料,构建出可以模拟人脑运行的类脑器件,以及由这些器件集成的硬件类脑系统,是人工智能能否实现像人脑那样“灵光”的关键。

    近日,南京大学物理学院缪峰教授团队分别在类脑视觉传感器和可重构类脑电路方面取得重要进展。这些研究成果发表在权威期刊《科学·进展》和《自然·电子学》上。

    像搭“乐高”一样,搭出类脑视觉传感器

    “传统的机器视觉系统需要先探测再处理,使用的图像传感器在探测目标图像的同时会产生大量冗余信息,此类信息通过有限的带宽再传输至计算机,会导致较大的时间延迟和较高的功耗。人眼不仅可以同时探测、处理信息,而且整体功耗极低。”缪峰团队成员梁世军副研究员说。

    人类视觉系统强大的信息处理能力,很大程度上依赖于视网膜的独特结构和功能。视网膜中的主要细胞包括感光细胞、双极细胞等,这些细胞之间呈现出垂直分层的结构。

    光透过瞳孔入射到视网膜上后,感光细胞将入射光转换为电学信号,流经双极细胞,电学信号会得到一定的预加工和处理。加工后的信息仅仅保留原图像的主要特征,再传输至大脑皮层进行进一步的图像处理和理解。通过这种方式,视网膜在一定程度上实现了信息探测和处理的同步进行。

    “二维材料具有原子的尺寸和有别于传统三维材料的全新物理性质,而且对外界刺激响应灵敏。更为有趣的是,二维材料具有非常好的垂直扩展性,我们可以像‘搭乐高’一样,在原子世界里,将性质迥异的多种二维材料按照不同的顺序堆垛,制造出自然界并不存在的新型结构材料。”缪峰说。

    他的团队采用“原子乐高”的方式,实现了对视网膜结构和功能的模拟。科研人员将二硒化钨、氮化硼以及氧化铝制备成垂直异质结器件,这些垂直结构不仅能自然地模仿视网膜的垂直分层结构,而且所包含的不同二维材料还可用来模拟视网膜中不同细胞的功能。

    “通过控制垂直异质结器件的栅压,我们实现了对感光细胞和双极细胞生物功能的模拟,器件的响应时间和功耗均接近人类视网膜的水平——响应时间小于10毫秒,功耗小于10纳瓦。”缪峰说。

    打造二维“可重构”器件,让类脑电路“瘦身”

    目前,主流的信息处理技术依赖于冯·诺依曼架构,在这种架构中,数据的存储和计算是分开进行的。数据在存储和计算单元之间来回“搬运”,会产生较大的延时和较高的功耗,随时有“交通堵塞”的风险。而人脑的神经结构具有强大的信息处理能力,即使做大量的脑力活动,也只有20瓦左右的功耗。所以,近年来,科学家们不断尝试采用类似人脑神经元的结构来设计电路,以提升算力、降低功耗。

    人脑中神经元之间连接的部分被称为突触,它不仅具有记忆的能力,而且能够根据所传递的信号,调整传递效率。模仿此类运算模式的类脑电路,可实现数据的并行传送和分布式处理,并能够低功耗实时处理海量数据。

    “如何用更少的硬件,实现更多的运算,这需要电路具有可重构的特性。但目前主流的可重构电路是基于传统的硅基电路,构成这些电路的晶体管器件具有单一的电学特性,一旦制备完成,就无法通过电学操作实现动态转换。只有通过耗费大量的晶体管,来构建复杂的电路,才能让电路拥有可重构的计算能力。”缪峰说,他的团队利用二维层状半导体材料二硒化钨,设计出电场可调的二维同质结(ETH)器件,这种器件会表现出8种不同的电流开关状态,从而在器件层面实现了“可重构”的电流开关特性。

    “在大脑神经系统中,一个神经元需要与多个神经元之间互联来进行信息的传递和处理,这与传统晶体管器件单一端口的控制方式完全不同,所以拥有多端信号传递和多种电流开关状态的ETH器件,可以用来设计类似大脑的能够满足不同信息处理需求的类脑电路。”缪峰介绍,在传统的类脑芯片中,需要耗费超过10个晶体管,才能模拟生物突触的功能,这在很大程度上会限制传统类脑芯片的集成度。但研究团队设计的可重构突触电路,仅需利用3个ETH 器件和一个电容元件。

    缪峰说,这意味着,通过设计电场可调的ETH器件,在确保器件与电路都具有可重构功能的同时,可以大幅降低电路晶体管资源的消耗。“一方面有利于芯片的小型化和功能密度的提升,另一方面也能降低芯片的整体能耗,有望助力物联网、边缘计算、人工智能等应用的快速发展。”

相关报告
  • 《中国科学家研制新材料 有望助力“双碳”和太空探测》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-05-20
    • 白天可比环境温度高170摄氏度,夜晚可比环境温度低20摄氏度,无需外部能源消耗……近期,中国科学技术大学教授裴刚、研究员邹崇文等人研制出一种分别以太阳、太空为热源、冷源的“冷热双吸”材料,可24小时捕获利用能量,有望在改善地球温室效应、供应太空基地能源等方面发挥作用。 人类利用阳光已开发出不少应用,比如光伏发电、太阳能热水器等。而利用太空辐射制冷,近年来成为国际新兴科研热点。 裴刚、邹崇文团队研制出一种基于二氧化钒的涂层材料,其表现出“智能自适应性”:白天在太阳辐照下为金属态,吸收热能;夜晚则处于绝缘态,将热量辐射到外太空,从而吸收冷能。 实测发现,该材料表面温度白天可比环境温度高170摄氏度,夜晚可比环境温度低20摄氏度,24小时全天候运行,为高效捕获利用太阳热能和太空冷能开辟新途径。 日前,国际期刊《美国科学院院刊》发表了这项成果。 “我们主要的技术突破,是解决了光热转换和辐射制冷存在的红外光谱冲突,并分别强化其性能,在同一个材料上实现‘冷热同体’,优化空间和成本。”裴刚说。 据悉,“冷热双吸”材料的技术特点使其应用前景广阔,对实现“双碳”目标、缓解地球温室效应等具有积极意义。
  • 《图形设计助力材料的形貌研究》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-12
    • 美国布法罗大学Olga Wodo和爱荷华州立大学Baskar Ganapathysubramanian(共同通讯)等研究人员通过用标记的、加权的、无方向的图形来表示结构,从而简化了形貌与性能之间映射的表达过程。在此基础上,通过通用物理图形描述符(例如路径长度、域大小)和特定感兴趣属性的加权函数来创建了“替代”模型。他们设计了太阳能电池的形貌来说明该方法,并将初始态演变为优化后的形貌,后者表现了显著改善的短路电流(相对于传统的本体异质结形貌提高了68%)。他们展示了一系列厚度的优化形貌,均表现出自相似性。结果表明,较厚的薄膜(250 nm)可收集到更多的入射能量。该研究提出的基于形貌的图形设计不仅适用于设计具有微观结构敏感性的电池,而且可广泛应用于生物传感器和相关应用的器件设计中。该研究发表于npj Computational该项工作说明了如何通过基于图形设计策略有效地解决这些问题。他们通过将微观结构作为图形进行处理,可以实现高效、模块化和可扩展的表示形式,从而产生探索微结构空间的简单方法。同时,因为基于图形的测量可以快速而且有效地进行计算,因而其成为微结构到属性映射的优秀替代品。该基于图形的表示和图形与属性间的替代映射器可以与概率优化策略相结合,从而有效地识别最佳的微观结构。此外,该方法可以将特定领域的知识自然地结合到设计过程中,他们通过设计OSC的最佳结构来说明此概念,验证了该应用程序。由此识别产生了一类新的微观结构,其表现出了比当前假设的最佳微结构更好的性能。未来将期待材料界广泛使用这种微观结构设计策略,从而助力广大研究者的科研进程! 文献链接:Microstructure design using graphs (npj Computational Materials 2018, DOI: 10.1038/s41524-018-0108-5) Materials,题为“Microstructure design using graphs”。