2024年7月10日,奥塔哥大学等机构的研究人员在Nature发表题为Phage anti-CRISPR control by an RNA- and DNA-binding helix–turn–helix protein的文章。
在所有生物体中,基因表达的调控都必须根据细胞的需要进行调整,这通常涉及到螺旋-翻转-螺旋(HTH)结构域蛋白。例如,在细菌和噬菌体之间的竞赛中,噬菌体的抗CRISPR(Acr )基因在感染后迅速表达,从而逃避CRISPR-Cas的防御;转录随后被含有HTH结构域的抗CRISPR相关(Aca)蛋白抑制,这可能是为了降低过度表达带来的健康代价。然而,单个 HTH 调节器如何调整抗CRISPR 的产生以应对噬菌体基因组拷贝的增加和Acr mRNA 的积累,目前尚不清楚。
该研究发现调节因子 Aca2 的 HTH 结构域除了通过 DNA 结合抑制 Acr 的转录合成外,还通过结合保守的 RNA 干环和阻断核糖体的进入来抑制 mRNA 的翻译。约 40 kDa Aca2-RNA 复合物的冷冻电子显微镜结构展示了多功能 HTH 结构域如何从 DNA 结合位点特异性地识别 RNA。这些组合调控模式在 Aca2 家族中非常普遍,有助于在噬菌体 DNA 快速复制的情况下抑制 CRISPR-Cas,而不会出现有毒的 Acr 过表达。鉴于含 HTH 域蛋白的普遍性,预计还会有更多的含 HTH 域蛋白通过 DNA 和 RNA 的双重结合进行调控。