《探索 | 可用于红外光子器件和红外生物成像的高质量纳米晶体》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2024-07-12
  • 量子点被授予了2023年诺贝尔化学奖,其应用领域已经非常广泛,从显示器和LED到化学反应催化和生物成像等。这些半导体纳米晶体非常小,只有纳米量级,其特性(如颜色)与尺寸有关,并开始表现出量子特性。这项技术已经取得了长足的发展,但仅限于可见光谱,在电磁波谱的紫外和红外区域还有待开发。

    据麦姆斯咨询介绍,美国伊利诺伊大学香槟分校生物工程系教授Andrew Smith和博士后研究员Wonseok Lee在Nature Synthesis期刊上发表了一项新研究,他们利用已经开发成熟的可见光谱硒化镉(CdSe)前体,开发出了可吸收和发射红外线的硒化汞(HgSe)和硒镉汞(HgCdSe)纳米晶体。这些新纳米晶体保留了母体CdSe纳米晶体的理想特性,包括尺寸、形状和均匀性。

    Smith介绍说:“这是红外量子点达到可见光谱量子点相同质量水平的首个实例。”

    虽然纳米晶体技术已经发展了50多年,但只有在可见光区域工作的纳米晶体才取得了长足的进步。Smith解释说:“它们已成为显示设备的重要组成部分,也是很多光吸收或发光技术的重要组成部分。最终拥有巨大的市场价值,才是开发某种技术的内在推动力。”

    除了市场对可见光谱纳米晶体的需求,红外材料在化学方面的难度更大,因为红外光比可见光谱的波长更长、能量更低。要实现红外光的吸收和发射,必须使用元素周期表中位置更低的重元素。使用这些元素进行化学反应更加困难,会产生更多不想要的副反应,反应的可预测性也更低。这些元素还容易降解,容易受到环境变化(如水分)的影响。

    量子点纳米晶体可以由硅等半导体制成,也可以是二元或三元的。混合两种元素可以产生许多不同的特性。将三种元素混合在一起可以产生成倍增加的特性。

    Smith说:“我们一直在关注三元合金HgCdSe,并认为它有望成为一种‘完美’材料。通过改变镉原子和汞原子的比例,我们基本可以获得想要的任何特性。它可以跨越巨大的电磁波谱范围,从整个红外波段到整个可见光谱,实现广泛的特性。”

    Smith从读研究生时就开始尝试制造这种材料,但一直没有成功,甚至在其他广泛的研究领域也没有成功的报道,直到现在。

    他说:“我们采用的方法是把已经完善的可见光量子点CdSe作为‘牺牲模具’,它被认为是最成熟的量子点。”

    当将镉原子替换为汞原子后,瞬间就将一切转入了红外光谱,同时保留了需要的所有特性:强光吸收、强光发射和均匀性。

    为此,Smith和Lee放弃了合成纳米晶体的传统方法,即把前体元素混合在一起。在适当的条件下,它们会分解成所需的纳米晶体形式。事实证明,还没有人找到汞、镉和硒的有效合成条件。

    “Lee开发了一种名为扩散增强阳离子交换的新工艺。”史密斯说,“在这种工艺中,我们添加了第四种元素银,银会在材料中引入缺陷,使所有物质均匀地混合在一起。这就解决了整个问题。”

    虽然量子点有许多应用,但其中,红外量子点用作成像分子探针有可能带来重大影响。在这种应用,可以将红外量子点引入生物系统,然后在组织中进行检测。由于大多数量子点发射的是可见光谱,因而只有靠近皮肤表面的发射才能被检测到。然而,生物组织在红外光下是相当透明的,因此,利用红外量子点可以探测更深层的组织。

    小鼠是大多数疾病的标准模型,Smith解释说,有了能发射红外线的量子点,研究人员就能几乎完全透视活体啮齿动物,观察它们的生理机能和全身特定分子的位置。这将有助于更好地了解生物过程,开发治疗方法,而不必牺牲小鼠,从而改善临床前的药物开发。

相关报告
  • 《探索 | 原子级光滑的金晶体助力压缩光使纳米光子应用成为可能》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-07-20
    • 韩国高等科学技术研究院 (KAIST) 的研究团队及其国内外合作者近日成功实现在超薄的范德华晶体中引导压缩光。他们认为,该方法能够以极低的损耗引导中红外光,有力推动了基于纳米级强光-物质相互作用的超薄介电晶体在新一代光电子器件中的实际应用。 该研究的目标是基于声子极化子的技术的实际应用。声子极化子是极性电介质中离子与光的电磁波耦合的集体振荡,其电磁场与光的波长相比要压缩得多。最新究表明,当将材料放置在高导电性金属上时,薄范德华晶体中的声子极化子可以被进一步压缩。 在这种情况下,极化子晶体中的电荷在金属中“反射”,它们与光耦合会产生一种称为图像声子极化子的新型极化子波。高度压缩的图像模式提供了强光与物质的相互作用,但对基板粗糙度非常敏感,严重阻碍了其实际应用。 图 扫描近场光学显微镜的纳米尖端用于对金晶体边缘发射的hBN中的声子极化子图像进行超高分辨率成像 为了克服上述限制,来自四个不同研究团队的科研人员共同努力,设计了一个独特的实验平台。 KAIST电气工程系教授 Min Seok Jang带领的研究小组利用高灵敏度扫描近场光学显微镜(SNOM),直接测量了在单晶金衬底上63纳米厚的六方氮化硼(hBN)板上传播的双曲像声子极振子(HIP)的光场,显示了介质晶体中被压缩了100倍的中红外线光波。 Jang 教授及其研究团队的同事Sergey Menabde 教授成功获得了多波长HIP波传播的直接图像,并在常规hBN晶体中检测到一个来自超压缩高阶HIP的信号。他们表明,范德华晶体中的声子极化子可以在不牺牲其寿命的情况下被显著压缩。 由于用作 hBN 基板的金晶体的原子级光滑表面,在中红外频率下,金晶体的表面散射几乎为零且和欧姆损耗极低,使 HIP 传播处于一个低损耗的水平。 研究人员探测的 HIP 模式比具有低损耗介电基板的声子极化子压缩了 2.4 倍,但其寿命却相似,因此在归一化传播长度的品质因数提高了两倍。实验中使用的超光滑单晶金片由南丹麦大学纳米光学中心的N. Asger Mortensen 教授团队化学生长。 中红外光谱对于传感应用非常重要,因为该区域具有众多吸收线的有机分子。然而,传统的检测方法需要大量的分子才能产生读数。而超压缩声子极化子场可以在微观水平上提供强光物质相互作用,从而将检测限显着提高到单个分子。HIP 在单晶金上的长寿命将进一步提高检测性能。 此外,该研究还证明了 HIP 和图像石墨烯等离子体之间的相似性。两种图像模式都具有明显受限的电磁场,尽管它们的寿命不受较短极化子波长的影响。与介电基板上的范德华晶体中的常规低维极化子相比,该观察结果总体上为图像极化子提供了更广泛的视角,并突出了它们在纳米光波导方面的实用性。 Jang希望该方法能为实现更高效的纳米光子器件铺平道路,比如超表面、光开关、传感器和其他在红外区域工作的器件。
  • 《纳米级空间分辨率的红外光探头实现远红外波段探测》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2019-06-27
    • 拥有与所研究现象的空间和能量尺度相匹配的实验工具是开展科学研究的基础。对生物学、量子材料和电子学等领域的很多问题而言,这意味着需要同时具备纳米级空间分辨率与远红外能量探测的能力。例如,研究用于光电电路量子材料的集体电子振荡,生物系统中蛋白质分子的振动模式等。 同步辐射红外纳米光谱(SINS)技术,将宽谱同步辐射与原子力显微镜结合在一起,实现纳米尺度上的红外成像和光谱分析。然而,由于缺少合适的光源和探测器,这项技术无法应用于远红外波段。在这项工作中,研究人员将SINS的应用范围延展到远红外的波长范围,开启了全新的实验机制,形成纳米尺度和远红外谱段下研究异质材料能力,有望用于从凝聚态物理到生物学的广泛领域。 2014年,SINS在ALS光源上实验成功,并应用于光束线2.4和光束线5.4的用户终端站。该技术将红外光聚焦于原子力显微镜(AFM)的尖锐金属端,然后在尖端和样品表面收集反向散射光,并将其发送到探测器,空间分辨率一般为10~20nm,远小于光的波长,克服并超越衍射极限1000倍。 可用波长范围主要取决于光学元素和探测器。探测器通常为汞-镉-碲(MCT)类型的,可探测范围没有达到远红外或更长的波长。传统的远红外探测器虽可以实现探测,但对于典型的AFM尖端振荡频率来说,探测反应速度太慢。为了克服这些问题,研究人员开发了一种快速且高度敏感的铜掺锗(Ge:Cu)探测器,将SINS的可用波长范围拓展到31µm。 为了证明该技术的适用性和普遍性,研究人员测量了不同类型的代表性功能材料,包括电介质和极性氧化物、有机分子系统以及超薄2D范德瓦尔斯材料;探测了许多行为和激发,包括晶格振动(声子)、自由电子振荡(等离子体激元)和分子振动。实验中,利用厚度、晶体取向和施加电压等高灵敏参数,确定各种材料的不同光谱特征。 研究人员展示了通过施加静电电压调控石墨烯器件的远红外、纳米级等离子体属性的能力,为在远红外波段开展石墨烯以及其他新型2D材料的研究提供可能。与此同时,研究人员不断推动技术的发展,使其覆盖整个红外线波段范围,并一直延伸到太赫兹频率,以期在更宽的光谱范围内研究更丰富的新材料。