《苏州纳米所李清文、张其冲等合作Matter:纤维状光电人工突触用于可穿戴视觉记忆系统》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-12-27
  •   伴随传统纺织业与电子、制造、传感和物联网等技术融合,无处不在的织物被给予了更高的期望以及更多的功能,也逐渐演变为人工智能技术的新载体。电子织物作为可穿戴电子的重要分支在能量收集/储存、感知、显示/交互和信息存储/处理等领域引起了广泛关注。作为电子织物的基本单位,一维的功能纤维具有轻巧、超柔和多功能的特性。同时可以进一步通过成熟的编织技术制成透气纺织品,对未来智能织物的发展具有重要意义。在人类与外界环境的交互中,80%以上的外部信息都是通过我们的眼睛接收的,因此仿生人工视觉系统在人机交互、图像识别、自动驾驶和低功耗光神经形态等应用中展现出巨大的潜力。近年来,基于光电人工突触的仿生视觉系统取得了快速发展,可同时实现对电信号/光信息的感知并且能够对感知到的信息进行临时记忆甚至是初步的运算。目前,构建具有良好的柔性且兼具透气性的可穿戴人工视觉系统仍然面临着巨大的挑战。

      中国科学院苏州纳米所轻量化实验室李清文研究员与张其冲项目研究员等因此提出并验证了纤维状光电人工突触器件的概念,该器件可同时实现光/电信号诱导的多种仿生突触功能包括脉冲易化、长/短时程可塑性以及“学习-巩固-再学习”等行为。在光电突触性能的基础上,成功地将多个纤维状器件编入透气的织物,从而使得柔性织物能够实现对简单数字图像信息进行感知和存储的功能。

    在碳纳米管纤维上分别构筑含有氧空位的TiO2-X纳米线和MoS2纳米片阵列,得到的柔性纤维电极通过缠绕工艺制备了纤维状光电人工突触器件。通过对器件施加电刺激,器件展现出类似生物突触的行为如:兴奋、抑制行为,脉冲易化,短/长时程可塑性等。

     就人类的学习和记忆而言,瞬时获取并暂时存储的视觉信息最初会逐渐消失,除非在一段时间内连续获取相同的信息,这些记忆通过重复学习转移到长期记忆 (LTM)。因此,研究人员在纤维状光电人工突触器件上研究了光感知和突触特性,通过应用两个连续的光脉冲,间隔时间为10秒,观察到了光诱导的PPF特性。学习、遗忘和排练行为也通过不断地开/关灯来模仿。将一系列突触前脉冲应用于纤维状光电人工突触会导致突触后电流增加,从而促进突触连接强度(“学习”)。随着光刺激的去除,突触后电流逐渐降低(“遗忘”),表明存在STM过程。在“遗忘”过程后应用相同的突触前刺激,突触后电流迅速达到并超越之前的记忆水平(“再学习”),表明学习和记忆能力增强。

    纤维状光电人工突触展现出良好的柔性以及多方向的光吸收特性。为了展示基于纤维状光电人工突触的纺织品的视觉感知和记忆功能,研究人员将多个器件可编织入透气的织物,构建了利用光掩模的光电流成像纺织品,该织物能够对简单数字光学图像信息感知和记忆,证明了其在开发可穿戴视觉记忆系统方面的潜力。

    该研究工作为设计和开发感知记忆功能一体化的柔性功能纤维开辟了新途径。相关工作以Fiber-Shaped Artificial Optoelectronic Synapses for Wearable Visual-Memory Systems为题发表于Matter上,本文的第一作者是中国科学院苏州纳米所和华东理工大学联合培养博士生陈龙等,通讯作者是华东理工大学的袁双龙副教授,山东大学的李阳教授,中国科学院苏州纳米所的张其冲项目研究员和李清文研究员。该论文工作获得了中国科学院“率先行动”引才计划和江苏省青年基金项目的资助。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202212/t20221226_6589795.html;https://www.cell.com/matter/fulltext/S2590-2385(22)00691-9
相关报告
  • 《苏州纳米所李清文、张其冲等在高稳定性盐壳金属卤化物钙钛矿用于光致发光和可穿戴传感器研究方面取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-07
    • 人们对电子设备的便携性、多功能性和集成性的期待推动了可穿戴电子设备的快速发展。最近,摩擦电纳米发电机(TENGs)在能力收集、人机交互、医疗监测和自供电传感等方面引起了极大的关注。遗憾的是,这类交互设备大多由分隔的传感器和显示单元组成,因而总是需要一些笨重的设备或有线连接来将输出信号转换为人类易读出的形式。色彩提供了一种简单的传输信息的方法,其可调的颜色属性有望与传感器集成,为交互式信号的可视化开辟了新的途径。金属卤化物钙钛矿具有特殊的光物理性质,为未来的可穿戴电子产品提供了新的机会。然而,构建自供能、应变传感和显示等多功能特性一体化的光致发光传感系统是一个巨大的挑战。   中国科学院苏州纳米所轻量化实验室李清文研究员与张其冲项目研究员等提出了一种高效窄光致发光金属卤化物固体的水合成策略,进一步将其应用于自供电的可穿戴式光致发光传感器。通过该策略,仅使用水作为溶剂就制备了盐壳金属卤化物固体,其具有高效和狭窄的绿色排放,PLQY为87.3%。其中KBr盐不仅提供了一个富溴的环境来钝化钙钛矿的表面缺陷,而且还作为基质来提高其稳定性。该绿色环保的制备策略还可用于制备无色水性油墨和柔性光致发光薄膜。另外,该固态化合物可作为聚乙烯醇(PVA)的填料,用于TENG中的高性能正摩擦材料,所制备的TENG的输出性能是原始TENG的2.3倍。研究者进一步构建了电压响应范围为0-100kPa、响应时间为125ms的可穿戴光致发光传感器,以检测人体的各种运动。 通过简单的水蒸发结晶策略即可制备高发射窄半高峰宽的金属卤化物固体,巧妙的引入溴化钾盐使得难溶于水的溴化铅完全溶解在水中,不仅赋予了材料高量子产率,还提升了产物光和热稳定性。   得益于水蒸发结晶策略,前驱体水溶液可制备成水性墨水,通过与水性聚合物混合可以制备出柔性荧光薄膜,并且可以通过喷墨打印技术打印相关的图案。   作为概念验证,研究者还构建了电压响应范围为0-100kPa,响应时间为125ms的可穿戴光致发光压力传感器,未来有望构建同时具有显示-传感一体化自供电集成器件,检测人体的各种运动。   该研究工作为高发射的金属卤化物固体的合理设计提供了指导,并为扩展其在多功能可穿戴荧光传感器中的应用提供了参考。相关工作以Robust Salt-Shelled Metal Halide for Highly Efficient Photoluminescence and Wearable Real-Time Human Motion Perception为题发表于Nano Energy上,本文的共同第一作者是中国科学院苏州纳米所和华东理工大学联合培养博士生陈龙、上海交通大学博士生贺梦,通讯作者是华东理工大学的袁双龙副教授,新加坡南洋理工大学魏磊副教授,中国科学院苏州纳米所的张其冲项目研究员和李清文研究员。该工作获得了中国科学院“率先行动”引才计划和江苏省青年基金项目的资助。
  • 《苏州纳米所张其冲等合作AM综述:智能织物中的纤维交错器件》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-07-19
    •   智能电子织物融合了电子工程与纺织工程领域的前沿技术成果,为人们提供更加智能化和便捷的生活体验。当前报道的大量智能电子织物中,许多都采用纤维交错(Fiber Crossbar,以下用“FC”指代)结构作为其基本单元。这种结构由两根纤维交叉构成,并在交错点处构成某种电子器件(图1)。当外部刺激(如电流)通过时,纤维交错点的某些特性(如电阻、电容)会发生变化,从而对外部刺激做出响应。FC结构是实现智能可穿戴衣物的有力支撑。首先,与集成电路架构相似,FC能够以点阵的形式,在面料的各个交错点之上布置数量庞大的器件,不仅节省了器件所占用的空间,更为整片面料赋予更为复杂的功能。其次,在FC结构中,相邻的器件之间能够相互协作,实现更为多样化的功能,使每根纤维不再孤立。这种紧密的结构可以将传感、运算、显示、供能等多种功能融合在一起。  为了全面梳理FC结构的范式与进展,中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室张其冲项目研究员等与南洋理工大学魏磊副教授团队、中国科学院深圳先进技术研究院陈明副研究员合作在国际材料科学领域顶尖期刊Advanced Materials上发表了题为 Fiber crossbars: an emerging architecture of smart electronic textiles的综述文章,全面介绍了智能织物中的FC结构的器件设计、材料选用、制造技术与应用进展。此外,还讨论了纤维交错结构在当前面临的瓶颈挑战和未来的发展趋势。   器件是实现一切功能的核心元素。一个FC结构即是一个功能器件,而多个FC结构可以组成更大的阵列,实现更为复杂的模块化功能。如图2所示,该综述首先讨论了基于FC的器件的工作机理、结构设计与材料选用,具体包括基于FC的电阻器(FC-based resistors)、电容器(FC-based capacitors)、纳米发电机 (FC-based nanogenerators) 、忆阻器(FC-based memristors)、晶体管 (FC-based transistors) 、发光器件(FC-based lighting devices)和能量器件(FC-based energy devices)。本篇综述详尽分析了主要文献中报道的FC器件在可穿戴电子领域的主要应用案例。FC器件的主要应用可分为四大类功能:传感、运算、显示、供能。在传感方面,电阻、电容和纳米发电机等感应元件被广泛应用于可穿戴运动监测和位姿监测,为用户提供精准的数据和指导;在运算方面,忆阻器和晶体管等计算元件被用于执行二进制存储、布尔逻辑运算和基于神经形态运算的模式识别,为可穿戴电子设备提供强大的计算能力;在显示方面,各类发光器件被用作基本阵列单元,实现了对基本字母和语句的准确显示;在供能方面,各类超级电容器和太阳能电池被用作获取能量的主要途径,实现了可观的能量收集和转化能力。   随着研究的不断推进,FC结构在未来的发展前景十分可观,有望重新塑造医疗护理、人际通讯乃至商用服装等领域的人因设计思路。尽管FC器件具有巨大的潜力,然而综述认为,当前纤维交错器件仍然面临着一些挑战(详见图3)。   其中,挑战一是功能集成度不足。目前FC器件的功能仅限于传感、运算、显示和供能等基本功能,而控制和信号交互等重要功能的集成度较低。此外,各类功能还未能有机统一、相互辅助,导致当前的FC系统还处于探索阶段,难以满足复杂应用的需求,离商业化还有很长的路要走。   挑战二是智能化水平低。由于集成度不足的问题,FC系统的智能化程度有限。虽然已经实现了数据存储、逻辑运算和神经形态运算的功能,但这些功能仍然比较原始,只能满足简单逻辑(例如“与/或”运算)和小数据量条件下的运算。增加FC传感与运算元件的数量和密度是实现更大规模数据采集和更精准的织物运算的前提条件。   挑战三是材料的生物相容性有待提高。一些FC器件所使用的材料价格较高,而且一些材料(例如重金属、无机物)具有生物毒性,可能会在长期穿戴条件下出现泄漏,从而对人体构成安全隐患。因此,需要进一步研究材料的安全性能,以确保FC器件的市场准入性。   挑战四是缺乏成熟的评价指标体系。由于FC器件是一种新型的电子器件,目前还没有建立统一的评价指标体系。不同的研究人员在不同的实验环境下使用不同的实验参数,得出的实验结果差异较大,这些结果难以比较,很难衡量各自的优势劣势,也使得对于各类新报道的FC器件的评估变得更加困难。因此,需要建立统一的评价指标体系,以便更好地评估FC器件的性能和功能。 过去几十年,传统的电子设备逐渐演变为可穿戴的智能设备,并进一步分化出可穿戴的智能织物设备。开发功能性纤维以取代传统的纱线和棉线,进而开发“将功能融入织物”的纤维交错器件,对可穿戴产品的发展具有重要的意义。FC器件已被广泛应用于传感、运算、显示和供能等基本功能,并在医疗护理、人际通讯、商用服装等领域展现出广阔的应用前景。然而,当前FC器件在功能集成度、智能化水平、材料生物相容性和评价指标体系等方面仍面临着诸多挑战。因此,需要进一步深入研究FC器件的技术及其应用场景,并积极解决存在的问题,以推动FC器件的商业化进程,并为人类社会的发展带来更大的贡献。   南洋理工大学博士生周旭辉是该论文的第一作者,中国科学院深圳先进技术研究院陈明副研究员、中国科学院苏州纳米技术与纳米仿生研究所张其冲项目研究员和南洋理工大学魏磊副教授等为本文的通讯作者。该论文工作获得了中国科学院“率先行动”引才计划等项目资助。