《Nature丨与纳洛酮协同作用的 μ 阿片受体调节剂》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-07-07
  • 2024年7月3日,斯坦福大学医学院等机构的研究人员在Nature上发表了题为A μ-opioid receptor modulator that works cooperatively with naloxone的文章。

    μ-阿片受体(μOR)是一种公认的镇痛靶点,但传统的阿片受体激动剂会产生严重的不良反应,尤其是成瘾和呼吸抑制。这些因素导致目前阿片类药物过量流行,而芬太尼是一种强效合成阿片类药物。μOR负性异位调节剂(NAMs)可作为防止阿片类药物过量致死的有用工具,但有前景的化学支架仍然难以找到。

    该研究针对非活性 μOR 筛选了一个大型 DNA 编码化学库,并与活性、G 蛋白和激动剂结合的受体进行了反筛选,以 "引导 "命中的构象选择性调节剂。研究人员发现了一种对非活性 μOR 具有高度选择性富集的 NAM 化合物,它能增强关键的阿片类药物过量逆转分子纳洛酮的亲和力。NAM 与纳洛酮协同作用,可有效阻断阿片激动剂信号传导。研究人员利用低温电子显微镜证明,NAM 是通过与纳洛酮直接接触的细胞外前庭上的一个位点结合,同时稳定第二和第七跨膜螺旋的细胞外部分的独特非活性构象来实现这一效果的。NAM 能以治疗上理想的方式改变正交配体动力学,并与低剂量纳洛酮协同作用,有效抑制吗啡和芬太尼在体内诱发的各种行为效应,同时最大程度地减少戒断行为。

  • 原文来源:https://www.nature.com/articles/s41586-024-07587-7
相关报告
  • 《Nature | μ型阿片受体的动态构象机制》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-14
    • 2024年4月10日,清华大学陈春来、斯坦福大学Brian K. Kobilka、加州大学洛杉矶分校Matthias Elgeti共同通讯在Nature发表题为Ligand efficacy modulates conformational dynamics of the μ-opioid receptor的文章,深入研究了μ-阿片受体这种重要的G蛋白偶联受体(GPCR)的复杂结构和动力学特性,其在疼痛管理和各种生理过程的调节中发挥着关键作用。 阿片受体是一类存在于人体神经系统中的蛋白质受体,对阿片类药物(如吗啡、哌替啶等)及内源性阿片肽(如内啡肽、外啡肽等)起作用。这些受体主要分布于中枢神经系统(如大脑和脊髓)以及周围神经系统中的神经元上。阿片受体有μ、κ、δ等多种类型。这项研究的重点是了解从拮抗剂到超效激动剂等不同配体的结合如何调节μ-阿片受体(μOR)的构象整合。通过结合包括DEER和smFRET等的尖端技术,研究人员发现了受体构象动力学及其对信号转导的影响的显著细节。其中一个关键发现是识别了TM6的特定构象状态,已知TM6在GPCR激活中起着关键作用。DEER揭示了六种不同构象状态的复杂集合,研究人员将其分为非活性(R1和R2)和活性(R3和R4)状态。重要的是,发现这些状态的相对群体受到结合配体性质的强烈影响,拮抗剂有利于非活性构象,而高效激动剂稳定活性状态。 此外,研究人员证明,受体下游转导子G蛋白和β-arrestin的结合可以进一步调节构象平衡。值得注意的是,G蛋白结合优先稳定R3活性状态,而β-arrestin结合与R3和R4活性状态表现出更混杂的相互作用。这些发现表明,受体的构象动力学在决定不同信号通路的信号偏向方面起着至关重要的作用。smFRET实验提供了对受体构象动力学更深入的了解。通过使用两种不同的荧光团对,研究人员能够捕捉受体内的快速(<100ms)和慢速(>100ms)构象转变。作者发现快速转变是配体依赖性的,FRET峰的位置与结合配体的功效相关。另一方面,缓慢的转变归因于受体的细胞内环2(ICL2)的结构变化,而ICL2对G蛋白的结合和激活至关重要。 研究人员通过检查GDP对μOR-G蛋白复合物的影响,进一步探索了受体的构象动力学和G蛋白偶联之间的相互作用。他们的研究结果表明,高效和超高效激动剂不仅促进了无核苷酸的μOR-G蛋白复合物的形成,而且降低了GDP的亲和力,从而促进了G蛋白的活化。相反,低效力的G蛋白偏向激动剂表现出更稳定的GDP结合的μOR-G蛋白复合物,为其降低的信号功效提供了解释。 总的来说,这项研究代表了整合结构生物学的一项成就,揭示了配体结合调节μ-阿片受体构象动力学的复杂而微妙的方式。通过揭示支配受体激活和信号转导的潜在结构变化,这项工作有可能为开发针对阿片受体系统的更具选择性和更安全的治疗剂提供信息。
  • 《调节超小γ-Fe2O3纳米晶体组装用于可切换磁共振成像和光热-铁死亡-化学协同癌症治疗》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2022-12-07
    •       作为地球上最丰富的元素之一,铁是血红蛋白和许多维持生命的不同酶中的主要功能元素。人体内适量的铁离子对健康有益。值得注意的是,铁离子在细胞中的积累可能导致细胞死亡,这是一种由铁依赖性的活性氧(ROS)生成诱导的程序性细胞死亡,这种方式在2012年被定义为铁死亡(Cell, 2012, 149, 1060)。最近,为了开发新的癌症疗法,癌细胞的铁死亡治疗引起了越来越多的关注,并逐渐发展成为化学动力学治疗(CDT)的主要模式。因此,各种铁基纳米材料已被开发用于癌症的治疗和诊断,这不仅是因为铁死亡作用、较好的生物相容性和低成本优势,还因为铁基纳米材料优异的物理化学性质,如超顺磁性性能。磁性的铁基纳米治疗剂的另一个优点是通过磁共振成像(MRI)同时实现对肿瘤的精确诊断。由于高组织穿透力和空间分辨率,MRI是使用最广泛的成像诊断方法之一。然而,现有的磁性铁基MRI造影剂主要实现横向弛豫性(T2加权MRI)的单一成像效果,这对于低分辨的组织和肿瘤部位难以实现显著的成像诊断。因此,开发提高诊断效果的智能磁性铁基MRI造影剂对肿瘤的准确诊断具有重要意义。最近,动态可切换的MRI造影剂,可以通过特定的TME激活从T2到T1或从T1到T2的可切换MR成像,正成为高分辨率MRI的研究热点。   在此背景下,2022年11月20日,《Advanced Functional Materials》(IF 19.924) 在线发表了中国科学院生物物理研究所秦燕课题组和北京科技大学姜建壮教授、王天宇教授合作完成的研究论文" Modulated ultrasmall γ-Fe2O3 nanocrystal assembles for switchable magnetic resonance imaging and photothermal-ferroptotic-chemical synergistic cancer therapy",开展了癌症的动态MRI诊断和铁死亡治疗,光热治疗(PTT)和化学治疗协同治疗研究。该工作通过调节超小的γ-Fe2O3纳米晶组装体,开发了多级的Fe2O3结构,并进一步结合靶向分子叶酸(FA)和化疗药物(Dox),得到多功能肿瘤诊疗纳米药物UNA-γ- Fe2O3@PAH/PAA@Dox@PEG-FA (UF@PPDF NPs)。UF@PPDF NPs的分级组装结构大大提高了铁的利用效率,并实现了极高的近红外二区(NIR-II)光热转换效率。对于MRI,UF@PPDF通过动态T2-T1成像切换能够清晰地显示组织的大小和致密度,实现了肿瘤的高分辨诊断。同时,UF@PPDFNPs在NIR-II照射下表现出高效的PTT效果,以及铁离子和Dox的控制释放,从而实现了铁死亡治疗,光热治疗(PTT)和化学治疗相结合的三功能协同肿瘤治疗。差异表达基因的RNA测序(RNA-Seq)分析也表明了这种疗法在癌细胞信号传导中的多方面作用。细胞呼吸和电子传输被显著上调,而表观遗传途径,包括染色质修饰和转录活性被严重下调,从而导致细胞凋亡。因此,UF@PPDF NPs为高效的深部肿瘤诊疗提供了新的可能性。 编译来源:http://www.ibp.cas.cn/kyjz/zxdt/202211/t20221121_6551341.html