《纳米颗粒功能化氧化石墨烯显著提升反式平面钙钛矿电池效率》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-08-06
  • 短短几年内,有机—无机杂化钙钛矿太阳能电池的光电转换效率已经从3.8% 跃升至目前的23.3%,与商业化的晶硅太阳能电池相当。其中反式平面钙钛矿电池器件因制备工艺简单、可低温成膜、无明显迟滞效应等优点受到越来越多的关注。已有报道碳基纳米材料如碳纳米管、氧化石墨烯(GO)、还原氧化石墨烯(rGO)等用作为反式钙钛矿电池的空穴传输层,组装而成的电池器件展现出高的光电转换效率及持久稳定性。然而GO用作空穴传输层,其功函(-5.1 eV)与钙钛矿的价带(如MAPbI3为-5.4 eV)匹配不佳,进而限制电池效率。利用纳米颗粒改性制备功能化GO,是调整GO功函的一条简单有效的途径。

    成果简介

    近日,台湾国立交通大学刁维光教授(通讯作者)等人使用Au和MoOx纳米颗粒分别沉积在GO薄膜表面调整GO功函,以此制备ITO/GO or GO-AuNP or GO-MoOx/MAPbI3/PCBM/BCP/Ag结构的反式钙钛矿电池,进而显著提升器件开路电压。研究发现使用GO-AuNP作为空穴传输层时,载流子在Au纳米颗粒中复合,导致器件性能没有提高。相比之下,GO-MoOx作为空穴传输层,由于空穴离域抑制载流子复合,显著提高器件性能,光电转换效率最高可达16.7%。相关成果以题为“Functionalization of Graphene Oxide Films with Au and MoOx Nanoparticles as Efficient p-Contact Electrodes for Inverted Planar Perovskite Solar Cells”发表在Adv. Funct. Mater.上。

相关报告
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。
  • 《钙钛矿电池的十年之变》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-07-16
    • ■本报见习记者程唯珈 转眼间2019年已经过半,对中国科学院化学研究所研究员宋延林来说,好消息还在不断涌现。从喷墨打印制备器件,到图案化光子晶体电池设计,再到柔性可穿戴钙钛矿电池应用,他所从事的钙钛矿电池研究取得了一系列突破性进展。 近日,他带领的科研团队通过引入氟离子添加剂,印刷制备了一种新型导电高分子透明电极,并基于此成功制备了柔性钙钛矿太阳能电池(0.1cm2)和模组(25cm2),其光电转换效率突破19%和10%。相关成果发表于《焦耳》。 “近年来,钙钛矿电池发展迅速,科学家的一系列发现解决了深层次科学技术问题,提升了转化效率,让我们不断向发展高效稳定的太阳能电池迈进。”回首钙钛矿电池的十年发展,宋延林为科学家取得的成就感到骄傲。 从液态到固态 中国科学院化学研究所博士胡笑添告诉《中国科学报》,进入中国科学院以来,研究钙钛矿电池的机理和制备工艺一直是他的中心课题。 据他介绍,钙钛矿电池中既没有钙元素,也没有钛元素,而是得名于其中的吸光层材料——一种钙钛矿型晶体结构。钙钛矿电池是以ABX3钙钛矿晶体结构的半导体材料制备的太阳能电池,其中A通常为有机阳离子,B为Pb离子,X为卤素元素。由于制备工艺简单和成本低廉,对于科学家而言,钙钛矿电池是目前最有前景的光电技术之一,更是所属太阳能电池中的佼佼者。 2009年,日本科学家TsutomuMiyasaka率先将钙钛矿材料用于染料敏化太阳能电池作为吸光材料,采用CH3NH3PbI3敏化TiO2阳光极和液态I3-/I-电解质获得了3.8%的光电转化效率。但是,这种材料不稳定,几分钟后即宣告失败。 2011年,韩国成均馆大学Nam-GyuPark课题组通过技术改进,将转化效率提高到了6.5%。然而,由于仍然采用液态电解质,导致材料不稳定,几分钟后效率便削减了80%。 “液态电解质的钙钛矿敏化太阳能电池存在一个致命的缺陷,即液态电解质会溶解或者分解钙钛矿材料,可使电池在几分钟内失效。”胡笑添说。 能否找到一种新的电解质材料?为此,科学家不断扩大视野,创新性地将固态电解质作为空穴传输层。2012年牛津大学HenrySnaithHE和MikeLee课题组引入了空穴传输材料Spiro-OMeTA,实现了钙钛矿电池的固态化,转化效率接近10%。同时,该器件显示出极好的稳定性:未封装器件存放500小时后光伏性能未明显衰减。 至此,钙钛矿电池成为新的研究热点。 不断刷新世界纪录 在层出不穷的钙钛矿电池相关研究中,科学家发现,钙钛矿不仅吸光性好,还是不错的电荷运输材料。为此,他们不断对钙钛矿材料和结构进行改善,以提高钙钛矿电池的光电转换率。 2012年,牛津大学HenrySnaith将电池中的TiO2用铝材(Al2O3)进行了代替,这样钙钛矿在电池片中就不仅是光的吸收层,也同样可作为传输电荷的半导体材料。由此,钙钛矿电池的转换效率一下攀升到15%。 鉴于钙钛矿在太阳能电池中的应用和电池效率快速提升,2013年12月20日,钙钛矿入选美国《科学》2013年十大科学突破。 “钙钛矿材料便宜、易于制备,已经取得15%的光电转换效率。虽然比目前商业化的硅基太阳能电池效率低,但是钙钛矿型材料太阳能电池效率提升迅速,它和其它类型太阳能电池集成以后可以捕捉和转换更宽光谱范围的太阳光。”《科学》杂志如此解释入选理由。 2015年,中国、日本、瑞士合作制得大面积(工作面积超过1cm2)钙钛矿型太阳能电池,使其首次可以与其他类型太阳能电池在同一标准下比较性能,15%的能量转化效率得到国际权威机构认证。2016年,瑞士洛桑联邦理工学院MichaelGr?虞tzel教授课题组进一步将认证效率提高至19.6%。 几年来,这一数据不断攀升。2018年,中国科学院半导体研究所研究员游经碧课题组提出有机盐钝化钙钛矿表面缺陷的方法,先后研制出转换效率为23.3%、23.7%的钙钛矿太阳能电池,连续两次作为世界纪录被美国国家可再生能源实验室(NREL)发表的BestResearchCellEfficiencies收录。 近期,钙钛矿电池的光电转化效率又得到提升。中国科学院大连化学物理研究所研究员刘生忠告诉《中国科学报》,今年4月,韩国化学技术研究所(KRICT)科学家利用溶液旋涂法制备出一种新型钙钛矿材料,创造了24.2%钙钛矿电池效率的新纪录。 “钙钛矿电池效率提升如此迅速,这在光伏研究历史上是前所未有的。这反映出钙钛矿材料在光电领域的巨大潜力。如果最终实现大规模产业化,必将是一个颠覆性材料。”刘生忠说。 机遇与挑战并存 短短10年内,钙钛矿电池的光电转换效率已从最初的3.8%提高到了24.2%。然而,钙钛矿电池的商业化之路仍面临着巨大挑战。 在刘生忠看来,器件的稳定性是首要考验。“钙钛矿薄膜易于受到水分、氧气、紫外光照等因素影响而引起薄膜降解,从而导致电池性能逐步衰退,而这需要改进电池封装、钙钛矿结构维度下降、增加疏水层等。” 同时,规模化制造工艺也需提上议程。刘生忠介绍,目前高效率的钙钛矿电池均是小面积尺寸(小于1cm2),不利于商业化生产,因此想要让钙钛矿电池走出实验室需发展大面积的规模化制造技术。 谈及未来发展,胡笑添认为,钙钛矿电池有望取代硅基电池进行大面积并网发电和分布式发电。钙钛矿还可以实现柔性可穿戴和半透明贴附,应用在未来智能器件和智能建筑、汽车等领域。 这一想法已得到了验证。宋延林告诉《中国科学报》,课题组针对钙钛矿太阳能电池低温可溶液加工的特点,已发展了一系列柔性可穿戴钙钛矿太阳能电池。 “研究人员通过纳米组装—印刷方式制备蜂巢状纳米支架作为力学缓冲层和光学谐振腔,从而显著提高了柔性钙钛矿太阳能电池的光电转换效率和力学稳定性。同时,引入两亲性弹性结晶基质到钙钛矿前驱体溶液中,以解决钙钛矿晶体薄膜的脆性问题,实现了可穿戴模组。”宋延林说。 在他看来,钙钛矿相比传统硅基电池的应用更为广泛。虽然短时间内取代硅基电池进行规模发电还不太容易,但柔性和半透明等新应用方式可以扬长避短发挥钙钛矿电池的优点,有望最早进入人们的日常生活中。 相关论文信息:https://doi.org/10.1016/j.joule.2019.06.011