《BioRxiv,3月7日,(第2版更新)The within-host viral kinetics of SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-08
  • The within-host viral kinetics of SARS-CoV-2

    Chentong Li, Jinhu Xu, Jiawei Liu, Yicang Zhou

    doi: https://doi.org/10.1101/2020.02.29.965418

    Abstract

    In this work, we use a within-host viral dynamic model to describe the SARS-CoV-2 kinetics in the host. Chest radiograph score data are used to estimate the parameters of that model. Our result shows that the basic reproductive number of SARS-CoV-2 in host growth is around 3.79. Using the same method we also estimate the basic reproductive number of MERS virus is 8.16 which is higher than SARS-CoV-2. The PRCC method is used to analyze the sensitivities of model parameters and the drug effects on virus growth are also implemented to analyze the model.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.02.29.965418v2
相关报告
  • 《BioRxiv,3月2日,The within-host viral kinetics of SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-03
    • The within-host viral kinetics of SARS-CoV-2 Chentong Li, Xu Jinhu, Jiawei Liu, Yicang Zhou doi: https://doi.org/10.1101/2020.02.29.965418 Abstract In this work, we use a within-host viral dynamic model to describe the SARS-CoV-2 kinetics in host. Chest radiograph score data are used to estimate the parameters of that model. Our result shows that the basic reproductive number of virus in host growth is around 4.11. The PRCC method is used to analyze the sensitivities of model parameters and the drug effects on virus growth are also implemented to analyze the model. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《BioRxiv,3月24日,(第2版更新)Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-25
    • Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection Xiaojun Li, Elena E. Giorgi, Manukumar Honnayakanahalli Marichann, Brian Foley, Chuan Xiao, Xiang-peng Kong, Yue Chen, Bette Korber, Feng Gao doi: https://doi.org/10.1101/2020.03.20.000885 Abstract COVID-19 has become a global pandemic caused by a novel coronavirus SARS-CoV-2. Understanding the origins of SARS-CoV-2 is critical for deterring future zoonosis and for drug discovery and vaccine development. We show evidence of strong purifying selection around the receptor binding motif (RBM) in the spike gene and in other genes among bat, pangolin and human coronaviruses, indicating similar strong evolutionary constraints in different host species. We also demonstrate that SARS-CoV-2's entire RBM was introduced through recombination with coronaviruses from pangolins, possibly a critical step in the evolution of SARS-CoV-2's ability to infect humans. Similar purifying selection in different host species and frequent recombination among coronaviruses suggest a common evolutionary mechanism that could lead to new emerging human coronaviruses. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.