《棉花遗传改良团队揭示GhKAS1_A05影响棉籽油含量分子机制》

  • 来源专题:生物育种
  • 编译者: 季雪婧
  • 发布时间:2024-10-22
  • 10月1日,棉花遗传改良团队在Plant Physiology and Biochemistry 期刊发表了题为“Natural variation in GhKASI_A05 modulates cottonseed oil content in Gossypium hirsutum L”的研究论文。该研究解析了棉花β-酮酰基-[酰基载体蛋白]合成酶(GhKASI)调节棉籽油积累的分子机制。

    棉花是我国重要的经济作物,除了棉花纤维可以为纺织业提供原材料外,棉籽中丰富的蛋白和油份在饲料和植物油的应用中同样具有很高的经济价值,棉籽油中富含对人体有益的不饱和脂肪酸,如亚油酸(C18:2)和油酸(C18:1)。作为植物中催化脂肪酸(FA)从头合成的关键酶,KASI调节FA链从C4到C16的延伸,在水稻、油菜、芝麻等植物中已报道KASI影响植物生长发育的多个方面,包括植物种子发育、脂肪酸含量、叶绿体发育等,但KASI对棉籽油调节的研究还未有相关报道。

    该研究利用503份陆地棉种质资源群体,以脂肪酸代谢路径的相关基因进行候选基因关联分析,发现位于A亚组的KASI(GhKASI_A05)与棉籽油含量(SOC)显著相关。为了确定该基因调节棉籽油的分子机制,该研究在高油种质(Hap_pro_D)和低油种质(Hap_pro_I)中对GhKASI_A05进行序列分析,发现位于GhKASI_A05启动子上的一个11bp的插入缺失(Indel)与SOC显著关联,开发的相关标记获批国家发明专利(陆地棉棉仁含油量基因GhKAS1的分子标记及其筛选方法,ZL201810200184.4)。启动子活性分析,GUS染色分析表明该变异影响GhKASI_A05的基因表达水平。

    根据已有报道,植物AP2/EREBP家族转录因子WRINKLED1(WRI1)调节种子油的积累,为了鉴定调节GhKAS1_A05的关键调节因子,本研究筛选了一个在棉花种胚发育时期优势表达的GhWRI1基因,并通过LUC、Y1H以及EMSA互作分析,证明了GhWRI1蛋白可以直接与GhKASI_A05启动子上的AW-box顺式调控元件结合,激活GhKASI_A05的表达,并且该蛋白对11bp缺失的单倍型GhKASI_A05启动子的激活能力强于11bp插入的单倍型。

    最后,本研究利用种子特异启动子(棉花种胚发育25DPA)过表达GhKASI_A05基因,转基因棉花的种子大小、百粒重、蛋白质含量以及C16:0和C18:1含量增加,但SOC降低。本研究结果为GhKASI在棉花育种中提供了新的见解。

  • 原文来源:http://www.ebiotrade.com/newsf/2024-10/20241003065338408.htm
相关报告
  • 《中国农科院中棉所分子遗传改良创新团队揭示GhPAS1基因影响棉花株型的分子机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2021-06-07
    • 近日,中国农业科学院棉花研究所分子遗传改良创新团队鉴定了新的调控棉花株型结构的基因GhPAS1,阐明了GhPAS1通过正向响应油菜素内脂(BR)信号调控棉花株型发育的生物学功能,为创制适宜于机械化采收的棉花品种提供优异的种质资源。相关研究结果以“The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton”为题发表在国际学术期刊《作物杂志(The Crop Journal)》(IF=3.395,Q1)上。 棉花是世界上重要的纤维和油料作物。我国作为世界棉花生产、消费和进口第一大国,棉花在国民经济中发挥重要作用。株型是影响棉花机械化和产量的关键因素。棉花具有多年生、无限生长的特性,具有复杂的分枝模式,侧枝较长、松散的株型不利于棉花单产提高和机械化采摘。棉花株型相关基因的发掘和调控机制的解析是实现棉花株型改良的重要途径。 该研究前期鉴定了调控棉花株型结构的基因GhPAS1。陆地棉中GhPAS1沉默显著抑制植株生长发育,极大地改变棉花的株型结构,主要表现为株高降低、果枝数目减少、果枝长度缩短和棉铃数目减少,证明GhPAS1调控株型结构的建成。进一步的研究发现GhPAS1过表达能够部分恢复棉花BR缺陷型突变体pag1的矮化表型,表明GhPAS1是正向响应BR信号的调控因子。该研究结果为解析植物激素BR调控棉花株型建成的机制奠定了重要的理论基础,为棉花株型改良提供重要的基因资源。 中棉所吴焕焕博士和新疆农业大学任中英硕士为共同第一作者,中棉所李付广研究员和杨作仁研究员为共同通讯作者。该研究得到了国家自然基金创新研究群体项目(31621005)和国家转基因重大项目(2018ZX0800921B)的资助。 原文链接:https://doi.org/10.1016/j.cj.2020.10.014 (原标题:中国农科院中棉所分子遗传改良创新团队揭示GhPAS1基因影响棉花株型的分子机制)
  • 《我校棉花团队揭示棉花干旱应答的转录后修饰新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-31
    • 近日,我校植物科学技术学院棉花团队在Plant Biotechnology Journal在线发表题为“N6-methyladenosine RNA modification regulates cotton drought response in a Ca2+and ABA-dependent manner”的研究论文,研究揭示棉花去甲基化酶GhALKBH10B通过介导ABA和Ca2+信号传导途径中的重要基因的去m6A甲基化修饰调控棉花干旱应答及抗旱性机制。 棉花是重要的经济作物,棉纤维是纺织工业的主要原料。随着我国棉区向新疆转移,干旱胁迫成为影响棉花生产的主要非生物逆境因素。研究棉花干旱胁迫应答的分子机制,挖掘抗旱的关键调控因子并加以利用,进而培育耐旱性棉花品种,是解决棉花抗旱资源贫乏及提高水资源利用率的有效途径。植物对干旱的应答在基因组、转录和转录后水平上都受到高度调控。N6-甲基腺苷(m6A)是最常见的mRNA修饰,在人类、动物、植物等多个物种中均发挥着重要调控作用。在植物中,m6A主要参与植物发育、逆境响应等生物学过程。目前,棉花抗旱机制的研究大多停留在基因转录水平的调控,棉花干旱应答过程在转录后mRNA修饰层面的调控机制仍不清楚。 本研究利用团队前期筛选到的抗旱性存在显著差异的抗旱棉花品种ZY168和敏旱品种ZY7,通过MeRIP-seq构建干旱处理不同时期(轻度干旱,MD;重度干旱,SD;干旱复水期,RW)棉花全转录水平的m6A修饰图谱(图1)。对棉花干旱响应m6A修饰模式的分析发现,棉花中m6A修饰主要集中在基因的3′UTR区;干旱胁迫使m6A含量升高,且抗旱和敏旱品种在干旱胁迫下表现出m6A分布的显著差异,即在干旱胁迫下抗旱品种5′UTR区富集了更多的m6A。对m6A修饰基因的表达分析表明,m6A修饰通过调节关键基因mRNA丰度正调控棉花抗旱性。 研究进一步认识到一个棉花中受干旱胁迫诱导表达的、与人类m6A去甲基化酶基因ALKBH5同源的基因GhALKBH10B,通过LC-MS/MS和Dot blot实验证明棉花去甲基化酶GhALKBH10B具有去m6A活性。利用CRISPR/Cas9技术创建去甲基化酶基因GhALKBH10B的突变体,苗期干旱实验分析表明突变GhALKBH10B基因植株m6A修饰显著上升,干旱处理进一步增强植株m6A修饰水平,且alkbh10B突变体植株抗旱性增强(图2);进一步分析发现,m6A修饰通过提高ABA合成及信号途径相关基因(GhZEP、GhNCED4和GhPP2CA)和Ca2+相关基因(GhECA1、GhCNGC4、GhANN1和GhCML13)mRNA的稳定性进而增强棉花抗旱性(图3)。 本研究揭示了棉花干旱应答的转录后修饰新机制,也是棉花中首例在mRNA甲基化层面阐明干旱应答与调控机制的研究,丰富了植物干旱应答的调控网络,为理解棉花抗旱机理提供了新的视角,为棉花抗旱育种提供新的策略和基因资源。 华中农业大学博士后李保奇、硕士研究生张萌萌为共同第一作者,华中农业大学作物遗传改良全国重点实验室棉花团队杨细燕教授和新疆石河子大学聂新辉教授为该论文共同通讯作者,团队张献龙教授、王茂军教授和英国杜伦大学Keith Lindsey教授参与研究指导及论文修改。本研究依托华中农业大学作物遗传改良全国重点实验室和湖北洪山实验室,受国家自然科学基金、湖北省自然科学基金、中国博士后科学基金和中央高校基本科研业务费专项资金的资助。 原文链接:https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.14036