《全球变暖提升北极地区N2O排放》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2016-11-23
  • The Arctic is warming rapidly, with projected temperature increases larger than anywhere else in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C) and nitrogen (N). Warming of arctic soils and thawing of permafrost thus can have substantial consequences for the global climate, as the large C and N stores could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming.

    The impact of warming on the release of CO2 and CH4 is currently a hot topic in numerous studies carried out in the Arctic. Previous research of the Biogeochemistry research group at the Department of Environmental and Biological Sciences, University of Eastern Finland, has shown, however, that arctic soils are further a relevant source of the strong greenhouse gas N2O -- nearly 300 times more powerful than CO2 in warming the climate. The relevance of this finding, and a potentially even larger N2O release in a warming Arctic, is now being addressed by researchers of the same research group. These results are recently published in Global Change Biology.

    The study provides the first field-based evidence that arctic N2O emissions increase when the Arctic is warming; and that hampered plant growth plays a substantial role in regulating Arctic greenhouse gas exchange. Besides the increased emissions of N2O, the authors observed significant increases in the seasonal release of CO2 and CH4 as a result of only a mild temperature increase, and dug deeply into the reason behind the observed changes by detailed soil and vegetation measurements. One of the major conclusions drawn from this study, with potential far-reaching implications, is that even mild air warming of less than 1°C is triggering greenhouse gas production at depth: enhanced input of labile organic substances from the soil surface, transported to deeper soil layers via leaching, greatly influences arctic greenhouse gas biogeochemistry. Since leaching processes as well as arctic N2O emissions are not yet well incorporated in Arctic biogeochemical climate models, they pose a challenge for future research.

  • 原文来源:https://www.sciencedaily.com/releases/2016/11/161121165458.htm
相关报告
  • 《全球变暖2度的极地地区展望》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:张灿影
    • 发布时间:2019-12-31
    • 随着2019年成为有记录以来最热的一年,一项新的国际研究揭示了北极变暖的速度有多快,并研究了北极持续变暖的全球后果。在过去的十年里,北极变暖了0.75摄氏度,远远超过了全球平均温度,而南极的温度则保持相对稳定。随着地球变暖接近2℃,北极和南极可能分别达到4℃和2℃的年平均气温,以及7℃和3℃的冬季气温。北极变暖加剧的预期后果包括陆地和海冰的持续减少、对野生动物和传统人类生计的威胁、甲烷排放的增加以及低纬度地区的极端天气。由于生物多样性低,南极生态系统可能容易受到国家转移和物种入侵的影响。这两个地区的海冰损失将对全球海平面上升产生重大影响,如果超过某些临界值,海冰可能上升3米。在没有减少碳排放的情况下,预计气候变暖的主要后果预计将波及极地以外的地区。其中包括北极和南极海冰快速融化导致的海平面上升,以及北半球部分地区极端天气、致命热浪和野火风险增加。 自十九世纪下旬以来,地球已经变暖了约0.8°C,而北极在同一时期变暖了2°~3°C。相反,南极年平均气温异常的年际和年代际变化比北极更为明显,过去20年没有明显的上升趋势。在空间上,在最近的仪器卫星记录中,观测到的两个区域的变暖明显不均匀,过去13年北极的暖化和暖化的空间变异性都比南极的增加得多。因此,尽管这两个地区在定义季节性和全年冰雪存在等特征上有相似之处,但在应对持续升温的过程中,它们可能面临不同的未来。 第四个国际极地年(IPY)十周年是一个里程碑,它加强了对极地地区观测到的和预期的变化的关注,还回顾了极地变暖对低纬度地区的副作用,最近已经有证据证明了这一点。仅在过去十年中,北极的温度就比1951~1980年的平均温度升高了0.75℃,而南极则保持了相对稳定。 最新一代的大气环流模型(CMIP5)表明,即使在中等碳减排轨迹下,北极的暖化速度预计仍将比低纬度地区快得多。预计北极将在全球范围内在全球1981~2005年的基线下,将会达到2°C年平均变暖。相比之下,在南极的年平均气温将略低于2℃,但在适度缓解情况下,南极的年平均气温将略早于全球。在这两种情况下,预计南极暖化仅在南极洲的深秋和冬季会超过全球平均暖化。当达到1981~2005年平均气温2°C以上时,北极可能会经历4°C的年平均气温升高和7°C的晚秋气温升高。特别值得注意的是,在正常情况下,预计到21世纪末北方深秋月份北极将出现13°C的变暖。在这两种情况下,南极的年平均暖化预计将达到约2°C,在南秋和初冬的气候下可能会有更大的变暖。因此,以将全球年平均暖化限制在2℃为目标的碳排放减缓可能不会将北极或南极的年平均暖化限制在2℃以下。然而,碳排放减缓可能会延迟北极2℃年平均暖化阈值的跨越。 相关论文链接:https://advances.sciencemag.org/content/5/12/eaaw9883 (郭亚茹 编译,於维樱 审校)
  • 《油菜中N2O排放过高。》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2018-02-07
    • 在德国,UFOP报告说,需要对油菜籽种植的温室气体排放进行现实的评估,以达到最佳的减排效果,而全球的违约价值高估了一氧化二氮的排放。由8个合作伙伴组成的网络调查了油菜籽的培养过程中的温室气体排放,发现油菜籽中温室气体排放的氮氧化物排放系数太高,不利于德国的条件。 油菜籽是德国生物燃料生产中最重要的能源作物。到目前为止,油菜籽种植中最高的温室气体排放是由氮氧化物和温室气体排放在生产所需合成氮肥过程中产生的。因此,根据UFOP的说法,这两个排放源应该集中于确保符合欧盟的要求(RL EU 2015/1513)。 研究人员建议用有机肥料代替人工肥料,例如,通过消化,在减少氨排放的情况下,改善了项目中的温室气体平衡。然而,一个潜在的问题是高氮过剩的风险。在合成肥料的生产过程中,避免氧化亚氮的排放和节约能源同样重要。 ——文章发布于2018年2月3日