《中国科学院制成具有强可见-近红外吸收峰和高光热转换效率的超碳纳米点》

  • 来源专题:纳米科技
  • 发布时间:2016-07-27
  • 近日,中国科学院长春光学精密机械与物理研究所研究员曲松楠课题组首次研制出在可见-近红外区具有强吸收和高光热转换效率的超碳纳米点,该工作突破了碳基纳米材料在可见到近红外波段的吸收系数低的限制,并实现近红外区高达53%的光热转换效率,为该类材料国际上报道的最高值,在开发基于碳纳米点的光热治疗试剂方面具有重要的应用前景。

相关报告
  • 《中国科学院苏州纳米所王强斌课题组发表近红外II区活体荧光成像展望》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-30
    • 近红外II区荧光(1000-1700 nm, NIR-II)极大克服了传统荧光 (400-900 nm) 面临的强的组织吸收、散射及自发荧光干扰,在活体成像中可实现更高的组织穿透深度和空间分辨率,被视为最具潜力的下一代活体荧光影像技术。      中国科学院苏州纳米所王强斌研究员团队经过十年的努力,在近红外II区活体影像技术领域取得了系统性研究成果: 1)发现和发展了一种新型Ag2S近红外II区荧光量子点体系:在国际上率先提出Ag2S量子点体系,首次报道了其近红外II区荧光性质,研究发现其具有稳定的理化性质和优异的生物相容性;根据半导体能带理论,进一步拓展了近红外II区荧光量子点体系,获得了Ag2Se近红外II区荧光量子点和Ag2S-ZnS、Mn掺杂Ag2S-ZnS等多色荧光发射的半导体异质结体系。(J. Am. Chem. Soc., 2010, 132, 1470-1471; Angew. Chem. Int. Ed., 2011, 50, 7115-7118; ACS Nano, 2012, 6, 3695-3702; Chem. Mater., 2012, 24, 2407-2413; Chem. Mater., 2013, 25, 2503-2509; J. Phys. Chem. C, 2014, 118, 4918-4923) 2)自主研制了系列近红外II区荧光成像设备:突破传统的基于硅基探测器(400-900 nm)的荧光成像技术限制,自主开发了基于短波红外铟镓砷(InGaAs)焦平面阵列探测器的近红外II区荧光倒置显微镜、激光共聚焦显微镜和小动物活体成像系统,实现近红外II区荧光成像设备“人无我有”,为在分子水平、细胞层次和小动物活体模型开展跨层次、多尺度的近红外II区荧光影像研究奠定坚实基础; 3)建立了近红外II区荧光活体“可视化”生物医学研究技术平台:利用近红外II区荧光活体成像的优势,在小动物活体水平获得了高组织穿透深度(>1.5 cm)、高时间分辨率(~30 ms)和高空间分辨率(~25 μm)的原位、实时成像,较传统荧光成像技术实现了数量级提升;建立了肿瘤转移、肿瘤靶向治疗与疗效评估、蛋白药物筛选、和干细胞再生医学的“可视化”研究新策略。(Angew. Chem. Int. Ed., 2012, 51, 9818-9821; Biomaterials, 2014, 35, 393-400; Small, 2015, 11, 4517-4525; ACS Nano, 2015, 9, 12255-12263; Adv. Funct. Mater., 2016, 26, 4192-4200; Adv. Mater., 2017, 29, 1605754. Adv. Funct. Mater., 2014, 24, 2481-2488; Biomaterials, 2015, 53, 265-273; Small, 2017, 14, 1702679; Adv. Healthcare Mater., 2018, 1800497)   鉴于在近红外II区荧光成像领域的重要贡献,王强斌课题组受美国化学会ACS Nano杂志邀请撰写了“Challenges and Opportunities for Intravital Near-Infrared Fluorescence Imaging Technology in the Second Transparency Window”展望,并于近日发表(ACS Nano 2018. DOI: 10.1021/acsnano.8b07536. Invited Perspective)。该展望对该新型荧光影像技术从出现到兴起这十年来在纳米尺度探针的构建及成像方法学的进展进行了简要回顾;对目前制约该技术向生物医学及临床转化的瓶颈问题进行了剖析;最后,展望这种新型荧光影像技术在生物医学领域包括脑科学、干细胞再生医学、活体传感及药物筛选方面发挥重要作用,加快推进生物医学的发展。
  • 《中国科学院北京纳米能源所李舟研究员和王中林院士团队AM:基于天然材料的生物全可吸收摩擦纳米发电机》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-07-04
    • 文章亮点:成功开发出基于天然材料的生物全可吸收的摩擦纳米发电机(BN-TENG)。 通过采用不同的封装结构,BN-TENG在生物体内的工作时间实现可调控,从几天到几周不等。完成功能后,BN-TENG可以在SD大鼠中被完全降解和再吸收。使用BN-TENG作为电源刺激功能失调的心肌细胞簇,可以成功加速心肌细胞簇的跳动速率并提高细胞收缩的一致性。 引言 日益增长的神经及心血管疾病对可植入医疗电子器件的需求越来越多,对其工作性能要求也越来越高。此类电子器件主要包括:植入式传感器、心脏起搏器、心脏除颤器、深脑/神经刺激器等。长期的体内植入对可植入医疗器件的体积、稳定性和生物相容性都有很高要求。现有可植入医疗电子器件的电源主要依赖于商业可充电及不可充电电池。此类商用电池在实际使用过程长常出现发热、容量减小及内部变性等问题。一旦此类电源达到使用寿命,病人不得不接受二次手术将其从体内取出,该过程对病人心理及经济带来极大负担。因此,急需开发一种新的电源给植入式电子器件供能,为解决上述问题提供可行的方案。 近年来,摩擦纳米发电机(TENG)已被证明能够高效地将环境机械能转化为电能,其原理是基于摩擦起电效应和静电感应之间的耦合。这种新兴的技术为自驱动电子设备提供了一种解决方案。先前的研究表明,TENG能有效地将生物机械能转化为电能,并应用于心脏起搏器、健康监测及细胞和组织工程等领域中。2016年,基于人工合成聚合物材料的全可生物降解的TENG首次被报道。但是,这些聚合物材料通常价格昂贵且含有潜在的有害化学物质。与这些人工合成聚合物相比,天然材料聚合物因其低成本,来源广,可持续和生物相容性良好等特点而受到越来越多的关注。这使得它们在生物医学领域被广泛应用,如药物输送,可吸收缝线和血管支架等。这些天然生物可吸收聚合物(NBPs)主要包括纤维素,甲壳素,丝素蛋白(SF),米纸(RP),蛋清(EW)等。它们具有优异的生物降解性、易加工性和良好的成膜性,这使其非常适合作为TENG的组成材料并应用于生物体内。 成果简介 近日,中国科学院北京纳米能源所王中林院士,李舟研究员和北京航空航天大学樊瑜波教授课题组(共同通讯作者)在国际顶级期刊 Advanced Materials上发表 “Fully Bioabsorbable Natural‐Materials‐Based Triboelectric Nanogenerators”的论文,江文博士,博士生李虎和刘卓为该文章共同第一作者。研究人员利用五种自然来源的可降解材料(纤维素/甲壳素/丝素蛋白/米纸/蛋清)开发出不同类型的纯天然生物全可吸收摩擦纳米发电机(BN-TENGs)。该工作对五种天然材料进行两两组合测试,对其摩电序进行了排列,为将来设计天然可降解BN-TENGs,以及其他能源收集器件的结构及材料选择提供了研究基础和数据。 该工作开发的纯天然生物全可吸收BN-TENGs具有良好的生物相容性,生物降解可调节性及生物可吸收性。此外,其还具有高效的生物机械能转化效率,BN-TENGs可实现在体内及体外正常工作,并将生物机械能有效转化为电能,BN-TENGs最大输出电压可达55V,电流可达0.6μA,功率密度可达21.6mW m-2。通过采用不同的封装方法,该工作实现了BN-TENGs在体内及体外的可控降解。 同时,研究人员将开发的BN-TENGs作为电压源用于功能失调的心肌细胞,成功调节了心肌细胞的跳动速率。当BN-TENGs完成预定任务后,植入到SD大鼠体内的BN-TENGs可被SD大鼠降解并吸收。该工作为心率过缓,心率不齐等疾病的治疗提供了新的研究方案。此外,该工作开发的BN-TENGs具有巨大潜力作为可植入电源驱动可降解的医疗电子器件,在完成其既定任务后,可被生物体自行降解吸收,避免二次手术。 组织工程中的电刺激为细胞调节和组织修复提供了一种有希望的途径。以前的研究结果证实了它在临床和研究环境中的可行性和有效性。本文中,BN-TENG的电输出具有较高的电压和较低的电流,有利于其在生物医学领域中电??刺激的应用。为了证明可以用BN-TENG来调节心肌细胞簇的跳动,我们将BN-TENG和叉指电极整合到一个自供电刺激系统中。如图6a所示,整个刺激系统是由BN-TENG、整流器和叉指式电极所组成。叉指电极采用50μm厚的聚二甲基硅氧烷(PDMS)薄膜封装,以避免电极与培养基之间的电化学反应(图6c)。由BN-TENG产生的18V整流输出电压连接到叉指电极上以形成直流电场(图6a,b)。考虑到PDMS封装层的厚度,心肌细胞和器件之间的界面处的实际电场强度约为8 V cm-1。 实验结果表明,在电刺激后所选取的四个心肌细胞簇的跳动速率明显加快,以C1区域为例,相邻两次跳动的时间间隔由刺激之前的1.382 s变为之后的0.606 s,且每次跳动所需时间也由之前的0.320 s减小到0.240 s。此外,根据表征电刺激前后肌细胞簇分散情况的统计结果,刺激前离散系数为0.81,约为刺激后的2.6倍。这意味着在电刺激后,四种心肌细胞群的搏动率变化显着降低。每个心肌细胞簇之间的搏动频率趋于一致,并在刺激后保持一致。其原因可能是电刺激增强了细胞间通讯,重建了功能失常的心肌细胞簇的收缩功能,这在以前的文献中得到了证明。这种BN-TENG整合的自供电刺激系统可以直接用于协调和修复异常心肌细胞。它可能为治疗一些心脏病如心动过缓和心律失常提供了新的有效解决方案。它也可用于体内心肌组织的重建过程。 总结与展望 研究人员使用五种天然材料(包括甲壳素,纤维素,SF,RP和EW)开发出生物全可吸收的BN-TENG。这些该工作按照材料得失电子能力的不同,首次对物种天然材料的“摩电序”进行了排列,即EW> SF>甲壳素>纤维素> RP。通过采用不同材料(U-SF和M-SF)作为封装层,BN-TENG在体内和体外的工作时间可调控,从数天到数周不等。此外,通过采用不同的摩擦材料组合,BN-TENG在体外的输出电压和电流的范围分别可以达8-55 V和 0.08-0.6 μA,该电学输出性能可满足不同电子器件的用电需求。将BN-TENG作为心肌细胞跳动速率调节的刺激电压源,心肌细胞簇的跳动速率被成功增强,细胞收缩一致性得到进一步改善,该工作为心动过缓和心律失常等心脏疾病的治疗提供了新的治疗途径。BN-TENG在完成其功能后,可被SD大鼠完全降解吸收。综上所述,该工作开发的基于天然材料的生物全可降解摩擦纳米发电机(BN-TENG)具有巨大潜力作为电源驱动可植入医疗电子器件,在完成其既定任务后,可被生物体自行降解吸收,避免二次手术。 基金支持 这项工作得到了科技部国家重点研发计划(2016YFA0202702, 2016YFA0202703),国家自然科学基金(31571006, 81601629, 61501039),北京市拔尖人才(2015000021223ZK21),北京市自然科学基金(2182091和2162017)以及 中组部“顶尖千人”及其创新团队的经费支持。