《探索 | 基于离子液体的高效便捷激光颜色转变技术》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-02-08
  • 激光作为光源可以产生各种波长的光束,根据波长的不同可以应用于不同的场景,比如激光扫描、激光切割、肿瘤治疗、可控核聚变的各行各业。但并非每种颜色的光都具有适合特定工作场景的合适属性。当需要其他激光波长时,通常会使用某种波长转换。为了解决这个问题,科学家研究了许多将一种颜色的激光转化成另一种颜色的方法。近日,美国能源部 (DOE) 布鲁克海文国家实验室的研究人员成功设计了一种高效便捷且可高度定制的波长转换技术。

    图 通过充满特定离子液体的管(照片右侧)发射绿色激光,可以轻易将其转换为橙色激光(左上),这正是医疗应用长期追求的目标。该技术还可以通过使用不同的离子液体来实现不同的颜色变化

    这种新技术依赖于激光与一种称为“离子液体”的材料的化学键中振动能之间的相互作用。这中液体仅由带正电荷和带负电荷的离子组成,就像普通食盐一样,但它们在室温下可以像粘性流体一样流动。简单地将激光照射到充满特定离子液体的管子中,就可以降低激光的能量并改变其颜色,同时保留激光束的其他重要特性。

    布鲁克海文实验室化学家、离子液体专家、论文主要作者James Wishart 表示,通过添加具有特定振动频率的离子,可以设计出一种特定的液体,使得激光按照振动频率进行波长转换。如果想要实现不同的颜色,我们可以替换掉一种离子,放入另一个具有不同振动频率的离子。组分离子可以混合和匹配,以根据需要将激光颜色改变不同程度。”该技术可以实现其他方法难以产生的颜色变化,比如从绿色激光到橙色的转变,这是治疗皮肤和眼部疾病等医疗应用的长期追求。

    该技术最初的想法来源于布鲁克海文实验室加速器测试设施(ATF)的一个项目,旨在提高独特的高功率二氧化碳(CO2)激光器的能力。科学家们使用ATF来探索从激光激发粒子加速器到窄波段高亮度X射线源此类的种种创新概念。

    “ATF 的 CO2 激光器是世界上唯一的超短脉冲、长波长激光器,有些实验在其他地方没法做,只能在这里完成,”该研究的共同作者、前博士后研究员 Rotem Kupfer 讲到。“将这种激光器从常用的电泵浦改为光泵浦,应该可以提高光束质量和重复率,从而实现更好的实验效果。”

    为了设计合适波长的激光用作光泵浦源,研究人员需要改变现有激光器的发光波长。他们采用受激拉曼散射法,利用固体、液体或气体中分子的振动频率。Kupfer解释称,激光将能量转移到分子振动中——构成材料的化学键的挤压和拉伸。之后出射的光子所具有的能量为原始能量与振动能量之差。光子能量越低,波长越长,换言之,激光可以具有不同的颜色。

    在气体中,因为处理的是单个分子,所以该过程相当简单。但是这些气体分子的振动频率有限,以至于限制了波长移动的类型,而且气体分子的扩散意味着散射效率低。某种意义上说,具有更紧密分子堆积的固体可以提高效率。但它们更复杂的振动频率使得生长具有所需特性的此类材料较为复杂,制作成本较高。

    Wishart表示,液体介于气体和固体之间,且仍是处理单个分子,而且密度更大,因此效率要比其提高,可以说是同时兼顾了气体和固体的优点。对于离子液体,人们可以通过设计分子一伙的所需的振动频率。

    离子液体具有光学透明的性质,可以轻易避免背景光的吸收。其较高的粘度避免了声波的激光散射,从而与水等低粘度液体中的变色效应竞争并减弱了变色效应。

    当研究人员致力于选择一种理想的离子液体来泵浦CO2激光器时,他们意识到使用离子液体的色偏方法具有更广泛的吸引力。据论文报道,他们描述了该技术在颜色变化中的用途,包括难度很大的绿色到橙色的转变。

    Wishart补充道,“目前有很多较为复杂的拉曼转移的方法,但是我们只需要正确选择离子液体,从一端射入激光,就可以得到想要的颜色,不需要任何额外的调整”。其他的颜色偏移的实现方法需要复杂的光学装置或者毒性材料,比如有机染料。另外,有的过程中还会“破坏”分子,但这种新技术只是使分子振动,没有损害。

    研究团队相信,该技术还可以通过一系列的改进进一步优化。但总体来说,离子液体的可定制性使其可以作为一个平台,为许多工业和技术项目提供高效便捷的激光波长转换。

相关报告
  • 《探索 | 利用激光直接控制原子核的自旋以用于编码量子信息》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-02-17
    • 图:显示了两个波长不同的激光束如何影响原子核周围的电场,如箭头所示,以推动原子核自旋的方式推动电场 原则上,基于量子的设备,如计算机和传感器,在执行许多复杂任务时,可以大大优于传统的数字技术。但是,尽管科技公司以及学术和政府实验室进行了大量投资,但在实践中开发此类设备一直是一个挑战性的问题。 目前最大的量子计算机仍然只有几百个“量子比特”,即数字比特的量子等价物。 现在,麻省理工学院的研究人员提出了一种制造量子比特并控制它们读写数据的新方法。该方法在现阶段是理论上的,它基于测量和控制原子核的自旋,使用两种颜色略有不同的激光器发出的光束。 相关研究发表在《Physical Review X》杂志上的一篇论文中。 长期以来,核自旋一直被认为是基于量子的信息处理和通信系统的潜在构建块,光子也是如此,光子是电磁辐射的离散包或“量子”。但要让这两个量子物体协同工作很困难,因为原子核和光子几乎没有相互作用,它们的自然频率相差六到九个数量级。 在麻省理工学院团队开发的新过程中,入射激光束频率的差异与核自旋的跃迁频率相匹配,从而推动核自旋以某种方式翻转。 Cappellaro教授说:“我们发现了一种新颖、强大的方法,可以将核自旋与激光产生的光光子相结合。”。“这种新颖的耦合机制使它们能够进行控制和测量,这使得使用核自旋作为量子比特成为一种更有前途的尝试。” 研究人员表示,这个过程是完全可调的。例如,其中一个激光器可以被调谐到与现有电信系统的频率相匹配,从而将核自旋转变为量子中继器,从而实现远距离量子通信。 以前使用光影响核自旋的尝试是间接的,而是与围绕核的电子自旋耦合,这反过来又会通过磁相互作用影响核。但这需要附近存在不成对的电子自旋,并导致核自旋上的额外噪声。对于新方法,研究人员利用了许多核具有电四极的事实,这导致了与环境的电四极相互作用。这种相互作用可以受到光的影响,从而改变原子核本身的状态。 “核自旋通常是非常弱的相互作用,”Li说,“但通过利用某些核具有电四极的特性,我们可以诱导这种二阶非线性光学效应,这种效应直接耦合到核自旋,而没有任何中间电子自旋。这使我们可以直接操纵核自旋。” 除其他外,这可以精确识别甚至绘制材料的同位素,而拉曼光谱是一种基于类似物理学的成熟方法,可以识别材料的化学和结构,但不能识别同位素。研究人员表示,这种能力可能有很多应用。 至于量子存储器,目前用于或考虑用于量子计算的典型设备具有相干性时间,这意味着存储的信息可以可靠地保持完整的时间量,通常以微小的几分之一秒来测量。但对于核自旋系统,量子相干时间是以小时为单位测量的。 该团队表示,由于光学光子被用于通过光纤网络的远程通信,因此将这些光子直接耦合到量子存储器或传感设备的能力可能会为新的通信系统带来重大好处。此外,该效应可用于提供将一组波长转换为另一组波长的有效方式。“我们正在考虑使用核自旋来转换微波光子和光学光子,”Xu说。 到目前为止,这项工作是理论上的,因此下一步是在实际的实验室设备中实现这一概念,可能首先是在光谱系统中。“这可能是原理证明实验的一个很好的候选,”Xu说。他说,在那之后,他们将研究诸如记忆或转导效应等量子器件。
  • 《探索 | Iontronic器件的未来:离子激光诱导石墨烯电极》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-27
    • 离子电子学领域的进步,特别是在离子电子器件电极的开发方面,最近取得了重大飞跃。已经开发了一种使用CO2激光辐照在聚酰亚胺离子凝胶上直接合成离子激光诱导石墨烯电极的新方法,有望以其卓越的石墨烯质量、最小的缺陷和更高的结晶度彻底改变该领域。这种创新技术不仅增强了PI离子凝胶的离子传输特性,而且还提供了稳定的界面形成和高EDL电容。 正如发布在《自然》杂志上的一项研究所报道的那样,研究人员已经成功地制定了一种方法,使用CO2激光照射在基于聚酰亚胺的离子凝胶上直接制造高导电性、适形的激光诱导石墨烯电极。该技术产生具有增强结晶度和扩展多孔结构的高质量石墨烯,从而降低界面电阻并增加 EDL 电容。本研究中的PI离子凝胶在电极界面处表现出特殊的双电层形成,这一特性主要归因于高效的离子迁移。当离子液体浓度被调制时,这种改进的离子传输特性导致了由EDL电容驱动的高性能离子电子器件。 在聚酰亚胺离子凝胶上直接合成离子激光诱导的石墨烯电极不仅阐明了制造高质量石墨烯的新方法;它还为其在各种技术设备中的应用开辟了一个充满可能性的世界。正如都灵理工大学的一份出版物所指出的那样,这种创新方法在柔性电子、储能和可穿戴设备方面具有潜在的应用。该过程涉及将聚酰亚胺离子凝胶转化为激光诱导的石墨烯,其表现出优异的导电性和机械柔韧性。这种机械、结构和电化学的多功能性表明了对低电压、高性能离子电子器件未来的重大影响。 利用CO2激光辐照在聚酰亚胺离子凝胶上生产离子激光诱导石墨烯电极的创新方法在离子电子学领域取得了突破性进展。它能够以最小的缺陷和更高的结晶度生产高质量的石墨烯,再加上它在各种技术设备中的潜在应用,推动我们更接近低电压、高性能离子电子器件司空见惯的未来。随着研究的不断完善和推进,我们可以预期离子传输特性和EDL电容的进一步增强,从而促进更高效和多功能的离子电子器件的开发。