《Nature | 通过表观基因组编辑在体内进行持久高效的基因沉默》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-02-29
  • 2024年2月28日,意大利IRCCS圣拉斐尔科学研究所的研究人员在 Nature 期刊发表了题为Durable and efficient gene silencing in vivo by hit-and-run epigenome editing的研究论文。

    改变疾病相关基因的表达有望治疗人类疾病。基因组编辑方法已经取得了一些成功,但有人担心破坏DNA引入序列变化可能会导致不需要的变异或意料之外的脱靶活性。表观遗传编辑是一个有吸引力的替代方案,它改变修饰DNA的化学组却不改变基因序列,但持续沉默目标基因仍难以实现。该研究显示,无需永久性基因组编辑,也可对一个控制胆固醇水平的基因做到长效抑制。这一靶向表观遗传沉默的效果在小鼠中持续近1年,令循环胆固醇水平下降。研究结果展示了表观遗传沉默治疗疾病的潜力。

    PCSK9基因表达的PCSK9蛋白能够与与肝细胞表面的低密度脂蛋白受体(LDL-R)结合,使LDL-R降解,从而升高血浆中低密度脂蛋白水平。低密度脂蛋白是一种富含胆固醇的脂蛋白,当其过量时,它携带的胆固醇会在动脉壁上积累,容易引起动脉硬化等心血管疾病。因此低密度脂蛋白也被称为“坏胆固醇”。如果降低PCSK9基因的表达或抑制PCSK9蛋白与LDL-R的结合,就能降低血浆中低密度脂蛋白胆固醇水平,从而预防心血管疾病的发生。

    在这项研究中,研究团队描述了一种方法以沉默小鼠Pcsk9基因,他们筛选了能识别目标基因的不同DNA结合平台,发现锌指蛋白效果最好。然后他们使用脂质纳米颗粒(LNP)递送表观遗传编系统到小鼠体内,脂质纳米颗粒进而循环到肝脏。一次注射表观遗传编辑器能实现有效、持续沉默小鼠的Pcsk9基因,几乎减半了循环PCSK9蛋白水平长达330天(实验结束时)。进一步改进他们的方法,可降低PCSK9水平达到传统基因编辑的水平(高达75%)。

相关报告
  • 《杜克大学Nature Biotechnology利用CRISPR操控表观基因组》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2020-10-10
    • 杜克大学的研究人员开发出了一种新方法,可以精确地控制基因开启及激活的时间。借助这一新技术研究人员可通过化学操控包装DNA的蛋白,来开启特异的基因启动子和增强子——控制基因活性的基因组片段。 研究人员说,拥有操控表观基因组的能力将有助于他们探究特殊启动子和增强子在细胞命运或遗传病风险中所起的作用,并可能为基因治疗及引导干细胞分化提供一条新途径。 这项研究在线发表在Nature Biotechnology杂志上。 杜克大学生物医学工程学助理教授Charles Gersbach说:“除了实际的遗传序列,基因组的一切都与表观基因组联系在一起。在健康和疾病状况下,表观基因组和我们的DNA发挥同样重要的作用,决定了细胞的功能。你想想我们有200多种细胞类型,每个细胞类型中的DNA几乎都是一样的,那么这一点就显而易见了。表观基因组决定了每个细胞激活哪些基因以及基因激活的程度。” 这样的遗传控制子是由组蛋白和一系列组蛋白或是DNA的化学修饰所构成——帮助决定了基因是否开启或关闭。 而Gersbach研究小组并没有通过改变基因自身来实现控制。 Gersbach说:“紧挨着每个基因都有一段称作为启动子的DNA序列,它控制了基因的活性。也有许多称作为增强子的其他基因组片段根本不靠近基因,但它们也同样发挥至关重要的作用,影响了基因的活性。” 在过去的十年里,杜克大学生物统计学和生物信息学助理教授Timothy Reddy将大部分的时间都投入到了绘制整个人类基因组数百万这样的增强子的图谱上。然而一直没有一种很好的方法来确定每一个增强子的确切功能。一个增强子或许可以影响靠近的某个基因或是整个基因组的几个基因——或是根本不影响任何基因。 为了激活这些增强子并了解它们的功能,Reddy想或许他可以采用化学方法改变增强子处的组蛋白来开启它们。 Reddy说:“尽管已经发现了一些可以影响整个基因组增强子的药物,但这就像‘焦土’政策。我想开发一些工具能够在特定的位点插入及改变非常特异的表观遗传标记,从而阐明每个增强子的功能。” 通过与杜克大学基因组和计算机生物学中心的Gersbach合作,Reddy找到了这种特异性。Gersbach专门研究称作为CRISPR的基因靶向系统。最初是作为细菌的一种天然抗病毒系统被发现,在过去的几年里研究人员劫持了这一CRISPR系统,现在它被应用来切割和粘贴人类基因组中的DNA序列(延伸阅读:清华大学Cell子刊发表CRISPR研究重要成果 )。 为了实现这一表观基因组编辑应用,Gersbach沉默了CRISPR的DNA切割机制,仅利用它作为靶向系统传送一种乙酰转移酶到特异启动子和增强子处。 “这就像我们使用CRISPR找到了一处遗传地址,因此我们可以在特异位点改变DNA的包装,”Reddy说。 Gersbach和Reddy通过靶向少数几个充分研究的基因启动子和增强子,对他们的一些人工表观遗传药物进行了测试。尽管很早以前这些组蛋白修饰就与基因活性联系在一起,然而人们并不清楚它们是否足以开启基因。虽然过去Gersbach和Reddy曾使用其他的技术激活了基因增强子,但却未能成功激活增强子。 让二人感到极为惊喜的是,药物不仅激活了一些基因启动子,相比于以往的方法还更好地开启了邻近的基因。同样令人惊讶的是,它也对增强子起作用:通过靶向基因组遥远位点的一些增强子他们可以开启一个基因或甚至是一些基因家族——这是他们从前的基因活化剂无法做到的事情。 而他们的研究结果真正令人兴奋之处在于,获得了一种新能力可以前所未有的方式探索数百万的潜在增强子。 研究的第一作者、Gersbach实验室博士后研究人员Isaac Hilton说:“一些遗传疾病是简单明了的——如果一个特定基因发生突变,那么你就会罹患疾病。但像癌症、心血管疾病或神经退行性疾病等许多疾病有着更为复杂的遗传组成。基因组序列中许多不同的变异可以影响你的疾病风险,并且这样的遗传变异可能发生在Tim发现的这些增强子中,在那里它们可以改变基因表达水平。有了这一技术,我们可以探究它们的确切功能以及它们与疾病或药物治疗反应的相关性。” Gersbach补充说:“你不仅可以开始解答这些问题,或许还能够将这一技术用于基因治疗来激活通常沉默的基因,或是控制干细胞变为不同细胞类型的途经。这是未来我们将追寻的所有方向。”
  • 《Science丨体内编辑肺干细胞,对小鼠进行持久基因校正》

    • 编译者:李康音
    • 发布时间:2024-06-19
    • 2024年6月13日,德克萨斯大学西南医学中心团队联合凯斯西储大学团队和ReCode Therapeutic合作在Science杂志上发表了题为In vivo editing of lung stem cells for durable gene correction in mice的研究论文。报道了肺部选择性脂质纳米颗粒(Lung SORT LNPs)成功在囊性纤维化小鼠模型的肺部实现对致病基因的修正。此项研究可能为囊性纤维化和其他遗传性肺病患者带来希望。 与常见的针对肺部递送的吸入法(由于给药方便,适合蛋白质替代疗法)相比,静脉注射的 SORT LNPs 通过避免疾病相关的粘膜屏障,并且由于肺内皮床与 LNPs 的紧密接触,可能更有机会进入肺基底干细胞。Siegwart团队最初使用经过基因改造的健康小鼠进行实验,使得经过基因编辑的细胞会发出红光。然后,他们通过静脉注射递送包含靶向肺部的基因编辑工具的 SORT LNPs。肺部持续的红光表明带有编辑基因的细胞至少存在了22个月。进一步的研究表明,超过70%的小鼠肺干细胞被基因编辑了。这种治疗方法对大约10%的囊性纤维化患者尤其有益,这些患者的疾病是由CFTR基因罕见突变或一种称为无义突变(例如 R553X)的特定突变类型引起的。Trikafta 无法治疗他们的疾病,而 Trikafta (Vertex)是目前囊性纤维化的黄金标准疗法。 在另一项实验中,研究人员使用 SORT  LNP对携带 R553X/F508del 突变的囊性纤维化患者分离出的肺细胞进行了碱基编辑,这些细胞在气液界面上培养,可以模拟肺部上皮细胞结构和功能,被认为是预测临床治疗效果的有力指标。实验表明,针对R553X突变基因的碱基编辑成功恢复了约53%的囊状纤维化跨膜转导调节子(CFTR) 的功能,这一结果与接受正对F508del突变的 Trikafta 治疗组在该实验中的结果相当。接下来,研究人员使用携带 R553X 突变的小鼠模型进行实验。尽管囊性纤维化的小鼠模型不会表现出人类囊性纤维化的呼吸系统症状,但它们确实与健康小鼠相比具有明显的生理差异。实验表明,碱基编辑在这种疾病模型中也取得了成功。 这些结果表明,基于器官选择性的脂质纳米颗粒 (SORT) 的基因编辑疗法有望长期治疗囊性纤维化和其他遗传性肺病。后续更多的研究需要在具有囊性纤维化症状的动物模型中验证这种方法,并确保这种潜在疗法的安全性。