《美国麻省理工学院利用碳纳米管制造出16位微处理器》

  • 来源专题:集成电路
  • 编译者: shenxiang
  • 发布时间:2019-08-31
  • 英国《自然》杂志28日发表了一项计算科学最新进展:美国麻省理工学院团队利用14000多个碳纳米管晶体管,制造出16位微处理器,并生成这样一条信息。其设计和制造方法克服了之前与碳纳米管相关的挑战,将为先进微电子装置中的硅带来一种高效能替代品。

    电子器件中所用的硅晶体管正达到一个临界点,无法进行有效扩展以推动电子学的进步。而碳纳米管是一种潜在的可用于制造高效能器件的替代材料,又名巴基管,重量很轻,结构特殊——主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。目前碳纳米管已经表现出优异的力学和电学性能,但其自身的缺陷和可变性,限制了这些微型碳原子圆柱体在大规模系统中的应用。

    此次,麻省理工学院科学家马克斯·舒拉克及同事设计和构建了一种碳纳米管微处理器,来解决这类问题。他们利用一种剥落工艺防止碳纳米管聚合在一起,以防晶体管无法正常工作。此外,通过精细的电路设计,减少了金属型碳纳米管而非半导体型碳纳米管的数量,后者的存在不会影响电路的功能,从而克服了和碳纳米管杂质相关的问题。

    研究团队将该微处理器命名为“RV16X-NANO”,并在测试中成功执行了一个程序,生成信息:“你好,世界!我是RV16XNano,由碳纳米管制成。”

    研究人员总结称,鉴于这个微处理器的设计和制造采用了行业标准,因此这项研究为超越硅的电子学指明了一个富有前景的发展方向。

    一直以来,人们都预测硅在芯片领域的主导地位可能会终结于碳纳米管之手。因为与传统晶体管相比,后者体积更小、传导性更强,还支持快速开关,性能和能耗表现都远远好于传统硅材料。但多年来,碳纳米管一直未能走上实际应用之路,原因之一是它的生长方式并不愿意“受人控制”;其二是杂质问题,只要存在少量金属性碳纳米管,就会损害整个处理器的性能。现在,尽管我们深知碳纳米管替代传统硅晶体管的日期仍需以10年为单位计算,但最重要的一步已经迈出,其给芯片领域带来的革命,指日可待。

相关报告
  • 《介绍麻省理工学院材料研究实验室》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2017-10-13
    • 材料加工中心(MPC)和材料科学与工程中心(CMSE)共同服务了150多名麻省理工学院的工程和科学研究人员,今天宣布他们的合并是麻省理工学院材料研究实验室。 麻省理工学院材料研究实验室(MRL)包括能源转换和储存的研究;量子材料;自旋电子学;光子学;金属;集成微系统;材料的可持续性;固态离子;复杂氧化物电子性质;biogels;和功能性纤维。“这些都是跨学科的话题,材料在其中扮演着关键的角色,”MRL主管卡尔v汤普森说,他是麻省理工学院材料科学与工程学院的斯塔夫罗斯萨拉帕塔斯教授。“我们的重点是科学发现,以及如何设计和制造能够改善性能的系统,或者使新方法能够解决现有的问题。” 该伙伴关系加入了材料加工中心广泛的材料研究领域,由工业、基金会和政府机构资助;材料科学与工程的基础科学、教育推广和共享实验设施,这些都是由美国国家科学基金会材料研究科学与工程中心(MRSEC)项目资助的。在截至6月30日的财政年度,联合研究的总规模为2150万美元。 “这两个成功的中心的合并将简化校园材料研究的组织,以提高有效合作的能力,”麻省理工学院的研究副总裁Maria Zuber说,他是地球物理教授。新中心将向Zuber汇报。 材料科学与工程专业副教授杰弗里。d.d.海滩已经被任命为MRL和首席研究员的副主任,接替TDK的高分子材料科学和工程教授Michael f.Rubner,他将在担任了16年的CMSE主任之后退休。 外部顾问委员会,其成员来自工业界、政府和学术界,以及由麻省理工学院教员组成的内部顾问委员会,将指导MRL。“材料研究实验室的形成是非常令人兴奋的,”MRL外部咨询委员会主席、桑迪亚国家实验室的执行官茱莉亚m菲利普斯说。“货币政策委员会和CMSE已经成为麻省理工学院杰出材料社区多年的支柱。将它们结合在一起将使它们达到下一个层次的协作,将杰出的研究与重要的工具和能力相结合,从而为MIT提供关键的连接。在麻省理工学院和它的工业合作伙伴和学术合作者之间,纳米技术的普及和增强的接口。” 麻省理工学院的MRL将与麻省理工学院合作。位于麻省理工学院校园中心的纳诺,将于2018年6月开放。汤普森说:“我们期待与他们合作,不仅是作为一个重要的合作伙伴,而且是一个好邻居。” 开创性的研究 MRL将受益于1998年的“完美镜像”技术在CMSE和MPC的长期研究突破,从而带来了一种新型的光纤手术和一个自旋的公司;OmniGuide手术;第一个锗激光是在2012年室温下运行的。汤普森说:“他们的本质是很难预测的,但我们能做的是创造一个环境,使研究取得突破性进展。”“在MPC和CMSE中,成功的模式是把对材料感兴趣的人聚集在一起,但有着不同的学科背景。我们单独做了,我们一起做,期望是我们会更有效地做这件事。” MRL支持麻省理工学院在美国三家制造业创新研究所的校园工作,第四种可能是在材料可持续性领域。目前的计划包括明天的轻量创新,美国制造集成光子学研究所,以及美国先进的功能纤维,以及基于氧化物的燃料电池材料和高效太阳能电池。?????? 年度材料日研讨会和海报会议将于10月11日星期三上午8点至下午6点举行。在Kresge礼堂(建筑W16)和斯特拉顿学生中心(建筑W20)。主题将是“材料研究领域的前沿”。除了麻省理工学院的教师研究报告外,还将有一个小组讨论,主要是麻省理工学院材料研究社区的高级领导人。海报会议包括来自多个领域的学生和博士后,他们在材料相关的研究上进行合作。 混合新旧 尽管凝聚态的物理学家们正在研究诸如磁性和光学驱动的拓扑半金属等二维材料的奇异状态的最新研究,但在冶金领域的研究也正在复兴。冶金学是材料科学的历史基础。例如,材料科学和工程主管Christopher A.Schuh开发了纳米结构的金属合金,以及约翰f.艾特利特的材料化学教授唐纳德r萨德威,开创了一种新型的金属电池,用于网格级的能量存储。“多年来,MPC工作人员的出色支持使我能够从我的资金中得到最多的支持。”对我来说,CMSE对其卓越的中央用户设施至关重要,”Sadoway说。“这两家公司的合并代表了麻省理工学院材料研究人员的一次重大整合。我期待着接下来会发生什么。” 跨学科的研究小组,将不同学科的教员集合在一起,是MRSEC的一个关键特征。每一组的核心都是一组基本的假设,旨在解决关键的科学问题,关于材料科学的一个重要的新兴领域。过去的项目主要集中在量子点、电池材料、功能纤维、集成的硅光子学以及许多其他的主题上。通过美国超导公司、OmniGuide外科手术、QD Vision和lu减号设备,由美国超导公司资助的研究产生了大约1100个新工作岗位。 Rubner说:“我们最大的遗产是将人们聚集在一起,创造出新的科学,然后让这些研究人员以可能对社会有益的方式来探索新的科学,以及开发新技术和发射公司。” 新的MRL副主任海滩的研究探索了复杂的纳米尺度结构,在这种结构中,不同材料——金属和氧化物——之间的相互作用,在自然材料中没有发现,这是新设备的基础,比如更快的磁存储器。“对于麻省理工学院的材料研究来说,这是一个激动人心的时刻。我对MRL将给我们的社区带来的机遇感到兴奋。”“通过提供一个协调的基础设施来支持基本的研究、教育、外展和工业活动,这一新的MRL将远远超过其各部分的总和。CMSE已经证明了它有能力使不同的研究团队在该领域的前沿开拓新的方向。我预计,MRL将进一步增强麻省理工学院这种协调工作的范围和影响。” 麻省理工学院材料研究实验室与七名成员组成的工业大学合作,由希望与麻省理工学院研究人员在创新材料加工研究和开发项目上更紧密合作的公司组成。汤普森说:“通过加入MPC和CMSE,我们将拥有一个更广泛的社区,我们还将拥有更广泛的研究课题,以吸引行业并形成新的合作伙伴关系。 ——文章发布于2017年10月10日
  • 《美国麻省理工学院基于破隙型GaSb/InAs缩放制造出垂直纳米线异质结隧道晶体管》

    • 来源专题:集成电路与量子信息
    • 发布时间:2024-11-15
    • 以数据为中心的计算的发展,需要克服传统硅晶体管基本限制的新型节能电子设备。研究人员已经探索了一系列新颖的晶体管概念,但仍然缺少一种同时提供高驱动电流和陡斜率开关,同时提供必要尺寸缩小的制造方法。 近日,麻省理工学院、法国 巴黎萨克雷大学等科研团队报道了基于破隙型(broken-band)GaSb/InAs系统,可缩放制造了垂直纳米线异质结隧道晶体管。这些器件的驱动电流为300μAμm?1,工作电压为0.3V时,开关斜率低于60mVdec?1。 据悉,团队利用由锑化镓和砷化铟组成的超薄半导体材料,研制出的这款新型3D晶体管,不仅性能与目前最先进的硅晶体管相当,还能在远低于传统晶体管的电压下高效运行。 此外,团队还将量子隧穿原理引入新型晶体管架构内。在量子隧穿现象中,电子可以穿过而非翻越能量势垒,这使得晶体管更容易被打开或关闭。为进一步降低新型晶体管“体型”,他们创建出直径仅为6纳米的垂直纳米线异质结构。测试结果显示,新型晶体管可以更快速高效地切换状态。与类似的隧穿晶体管相比,其性能更是提高了20倍。 这款新型晶体管充分利用了量子力学特性,在几平方纳米内同时实现了低电压操作以及高性能表现。由于该晶体管尺寸极小,因此可将更多该晶体管封装在计算机芯片上,这将为研制出更高效、节能且功能强大的电子产品奠定坚实基础。目前,团队正致力于改进制造工艺,以确保整个芯片上晶体管性能的一致性。同时,他们还积极探索其他3D晶体管设计,如垂直鳍形结构等。 论文下载链接:https://www.nature.com/articles/s41928-024-01279-w