《绘制出恶性疟原虫的药物可靶向基因组图谱》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2018-01-16
  • 在一项新的研究中,来自美国加州大学圣地亚哥分校等研究机构的研究人员利用全基因组分析和化学遗传学(chemogenetics)方法,在恶性疟原虫(Plasmodium falciparum)---一种导致疟疾的疟原虫---的262种疟原虫细胞系中鉴定出新的药物靶标和对37种不同的抗疟疾药物产生抗药性的抗性基因。相关研究结果发表在2018年1月12日的Science期刊上,论文标题为“Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics”。

    这项研究证实了之前已知的有效地导致这种疟原虫产生抗药性的基因修饰,而且也揭示出加深理解这种疟原虫潜在生物学特征的新药物靶标。

    论文通信作者、加州大学圣地亚哥分校医学院儿科系药理学与药物发现教授Elizabeth Winzeler博士说,“利用恶性疟原虫抗性组(resistome)---抗生素抗性基因集合---和它的药物可靶向(drug-able)的基因组将有助于指导新的药物发现工作,和增进我们对这种疟原虫如何经过进化加以反击的认识。”

    恶性疟原虫是通过被感染的疟蚊(Anopheles mosquitos)的叮咬传播给人的单细胞原虫。它导致大约所有疟疾病例的一半。疟疾给人类健康造成巨大影响---据世界卫生组织(WHO)估计,2016年全世界有2.16亿例疟疾病例,有44.5万人死于疟疾---的部分原因是这种疟原虫特别擅长改变它的基因组来逃避和抵抗药物治疗和人体免疫系统。

    Winzeler说,“一次感染能够导致一个人体内含有超过1万亿个无性血液阶段的疟原虫。即便具有相对较低的随机突变率,这些数字也赋予非凡的适应性。在仅几轮复制周期中,恶性疟原虫基因组就能够获得一种随机的遗传改变,这可能导致至少一个疟原虫对一种药物或人体编码的抗体产生抵抗力。”

    这些研究人员说,这种快速的进化对控制这种疾病提出了重大的挑战,但是它也能够在体外加以利用,以便准确地记录这种疟原虫在已知的抗疟疾药物的存在下如何经过进化产生抗药性。它也能够被用来揭示出新的药物靶标。

    Winzeler及其同事们采用了全基因组测序和多种不同的抗疟疾化合物,而不是关注于恶性疟原虫与单个化合物之间的相互作用,或者研究这种疟原虫中的潜在抗性基因。所获得的数据集揭示出发生多种不同的突变。抗药性疟原虫通常在潜在的靶基因中包含突变,而且在其他的无关基因中也包含额外的突变。

    Winzeler说,“我们的研究结果证实和强调了恶性疟原虫进化出耐药性是极其复杂的,但是它们也鉴定出新的药物靶标或者抗药性疟原虫用来对每种化合物产生抗药性的抗性基因。它不仅揭示出恶性疟原虫的复杂的化学遗传全景,而且也为设计新的小分子抑制剂来抵抗这种病原体提供潜在的指导。”

  • 原文来源:http://science.sciencemag.org/content/359/6372/191
相关报告
  • 《Science:鉴定出人体最为致命性疟原虫的基因组漏洞》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-05-09
    • 疟疾是由疟原虫引起的。2016年全球有2亿多人受到疟原虫感染,将近50万人死于这种疾病,主要是5岁以下的儿童。 寄生于人体的疟原虫有四种,即间日疟原虫(Plasmodium vivax)、三日疟原虫(Plasmodium malariae)、恶性疟原虫(Plasmodium falciparum)和卵形疟原虫(Plasmodium ovale)。恶性疟原虫导致世界上所有疟疾病例的一半,导致大约90%的死亡病例,使得它成为最为致命性的人体疟原虫。当及早发现时,疟疾是一种可治之症,但由于耐药性不断增加,当前使用的抗疟药(如青蒿素)正在很多地区失效了,因此新的药物是迫切需要的。 为了理解疟原虫需要哪些基因,在一项新的研究中,来自美国南佛罗里达大学和英国维尔康姆基金会桑格研究所的研究人员破坏了恶性疟原虫的5400个基因中的几乎每个基因。令人吃惊地,他们首次发现这些基因中的一半以上是这种疟原虫在红细胞中生长所必需的。相关研究结果发表在2018年5月4日的Science期刊上,论文标题为“Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis”。 来自维尔康姆基金会桑格研究所的研究人员在去年利用小鼠疟原虫---伯氏疟原虫(Plasmodium berghei)---开展了一项相关的研究(Cell, doi:10.1016/j.cell.2017.06.030),但是致命性的人体疟原虫需要采用一种不同的方法。在这项新的研究中,这些研究人员使用了一种被称作piggyBac转座子插入突变的技术随机地让恶性疟原虫基因失活,随后开发出一种新的DNA测序技术来鉴定哪些恶性疟原虫基因受到影响。 这些研究人员产生38000多种突变,然后寻找没有发生变化的基因,这意味着它们是恶性疟原虫生长所必需的。他们发现2600多个必需基因,其中大约1000个基因在所有疟原虫物种中是保守的,并且具有完全未知的功能。此外,他们发现的很多必需基因位于蛋白酶体通路中,这就使得这个通路成为克服青蒿素耐药性的一个良好靶标。
  • 《科研人员研发出恶性疟原虫中进行基因编辑的新型遗传操作工具》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-01-03
    • 12月24日,国际学术期刊《美国国家科学院院刊》(PNAS)在线发表了中国科学院上海巴斯德研究所江陆斌研究组题为Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum 的最新研究成果。 疟疾与艾滋病、结核病一起被列为全球三大传染性疾病。疟原虫是引起疟疾的真核病原微生物,其中恶性疟原虫的感染致死率最高。分子水平的遗传操作是研究恶性疟原虫病理学以及抗药机制的重要工具。然而,疟原虫中通过同源重组机制进行基因修饰的效率极低,而且恶性疟原虫缺乏可运行RNAi机制的关键原件,因而对疟原虫的研究急需发展一种高效简便的基因编辑工具。 Cas9的两个关键酶活位点被突变后的dCas9保留了结合DNA功能,但是失去了切割DNA的功能。将dCas9与一些表观遗传修饰因子相偶联,可以高效地对特定基因进行转录水平的调节。江陆斌研究团队利用CRISPR/dCas9系统,在恶性疟原虫中成功构建了基于表观遗传修饰的新型基因编辑工具。分别将dCas9与恶性疟原虫乙酰转移酶(PfGCN5)和去乙酰化酶 (PfSir2a)融合表达。在特异性sgRNA 的引导下,dCas9重组蛋白可以在靶基因的转录起始位点(TSS)附近特异性调节染色质组蛋白乙酰化修饰水平,从而控制该基因表达的沉默或激活。运用此新型CRISPR/dCas9技术,该团队分别对恶性疟原虫感染人体红细胞的两个关键基因PfRh4和PfEBA-175成功地进行了表达调控,并诱导出相应的感染表型的变化。在此基础上,该团队进一步鉴定出恶性疟原虫生长必需基因PfSET1参与调节恶性疟原虫红内期生长过程的分子基础。该研究成果为恶性疟原虫基因编辑提供了新的有效的遗传操作工具,为恶性疟原虫功能基因组学研究提供了强大的遗传操作系统。