《High-Performance Two-Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays》

  • 来源专题:绿色印刷—可穿戴电子
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • Abstract
    original image

    Fine count two-ply yarn supercapacitors are constructed from carbon nanotube yarns and polyaniline nanowires. The thread-like supercapacitor possess excellent electrochemical capacity and are very strong and flexible. When being woven or knitted into wearable electronic devices, alone or in combination with conventional textile yarns, the two-ply yarn supercapacitors can be flexed and stretched repeatedly without significant loss of capacitance.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/adma.201204598/abstract
相关报告
  • 《High-performance thermoelectric nanocomposites from nanocrystal building blocks》

    • 来源专题:绿色印刷—LED
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.
  • 《Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Continuous Remediation of Congo Red Dye Using... Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study Article Preview Abstract: This study employed an innovative approach, utilizing prepared dried polyurethane-polyaniline nano-composite, through in-situ polymerization, for continuous remediation of Congo red dye. Response Surface Methodology (RSM) based on the Box-Behnken design (BBD) model was utilized to optimize the processing parameters, including initial dye concentration, flow rate, and pH. The two-factor interaction (2FI) model emerged as the most significant, highlighting the influence of individual and interaction effects of the factors. Optimization of the dye remediation process yielded the optimal conditions of a flow rate of 10 mL/min, acidic pH of 5.00, and dye concentration of 20 mg/L, resulting in an impressive, predicted removal efficiency of 99.09% agreeing with the experimental value. Moreover, the maximum adsorption capacity was determined to be 329.68 mg/g. Characterization of the adsorbent material involved techniques such as Scanning electron microscopy (SEM), Fourier transforms infrared spectra (FTIR), X-ray spectroscopy (XRD), and Zeta potential analysis. This material offers a sustainable alternative in industries to treat Congo red dye before being disposed of into the environment. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 33-48 DOI: https://doi.org/10.4028/p-uyW1nl Citation: Cite this paper Online since: July 2024 Authors: Abubakar Ibrahim, Usama Nour Eldemerdash, Tsuyoshi Yoshitake, Wael M. Khair-Eldeen, Marwa Elkady Keywords: Congo Red Dye, Continuous Water Treatment, Foam, Polyurethane-Polyaniline Nanocomposite, Response Surface Methodology (RSM) Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] J. Rao, G. Ravindiran, R. Subramanian, P. Saravanan, Journal of the Indian Chemical Society Optimization of process conditions using RSM and ANFIS for the removal of Remazol Brilliant Orange 3R in a packed bed column, J. Indian Chem. Soc. 98 (2021) 100086. DOI: 10.1016/j.jics.2021.100086 Google Scholar [2] H. Zheng, J. Qi, R. Jiang, Y. Gao, X. Li, Adsorption of malachite green by magnetic litchi pericarps?: A response surface methodology investigation, J. Environ. Manage. 162 (2015) 232–239. DOI: 10.1016/j.jenvman.2015.07.057 Google Scholar [3] S.I. Siddiqui, E.S. Allehyani, S.A. Al-Harbi, Z. Hasan, M.A. Abomuti, H.K. Rajor, S. Oh, Investigation of Congo Red Toxicity towards Different Living Organisms: A Review, Processes. 11 (2023) 1–12. DOI: 10.3390/pr11030807 Google Scholar [4] L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021). DOI: 10.1016/j.mtcomm.2021.102155 Google Scholar [5] L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021) 126130. DOI: 10.1016/j.jhazmat.2021.126130 Google Scholar [6] M. Tanzifi, M. Tavakkoli Yaraki, M. Karami, S. Karimi, A. Dehghani Kiadehi, K. Karimipour, S. Wang, Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites, J. Colloid Interface Sci. 519 (2018) 154–173. DOI: 10.1016/j.jcis.2018.02.059 Google Scholar [7] C. Seto, B.P. Chang, C. Tzoganakis, T.H. Mekonnen, Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption, Int. J. Biol. Macromol. 185 (2021) 629–643. DOI: 10.1016/j.ijbiomac.2021.06.185 Google Scholar [8] L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021). DOI: 10.1016/j.jhazmat.2021.126130 Google Scholar [9] Y. Huang, B. Yuan, Reduced graphene oxide/iron-based metal–organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property, Mater. Lett. 298 (2021). DOI: 10.1016/j.matlet.2021.129974 Google Scholar [10] S.A. Vali, M. Baghdadi, M.A. Abdoli, Immobilization of polyaniline nanoparticles on the polyurethane foam derived from waste materials: A porous reactive fixed-bed medium for removal of mercury from contaminated waters, J. Environ. Chem. Eng. 6 (2018) 6612–6622. DOI: 10.1016/j.jece.2018.09.042 Google Scholar [11] M. Bhaumik, R. McCrindle, A. Maity, Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres, Chem. Eng. J. 228 (2013) 506–515. DOI: 10.1016/j.cej.2013.05.026 Google Scholar [12] V. Janaki, B.T. Oh, K. Shanthi, K.J. Lee, A.K. Ramasamy, S. Kamala-Kannan, Polyaniline/chitosan composite: An eco-friendly polymer for enhanced removal of dyes from aqueous solution, Synth. Met. 162 (2012) 974–980. https://doi.org/10.1016/j.synthmet. 2012.04.015. DOI: 10.1016/j.synthmet.2012.04.015 Google Scholar [13] A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, J. Hazard. Mater. 174 (2010) 398–403. DOI: 10.1016/j.jhazmat.2009.09.066 Google Scholar [14] R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, 99 (2008) 2938–2946. DOI: 10.1016/j.biortech.2007.06.027 Google Scholar [15] S.D. Ashrafi, G.H. Safari, K. Sharafi, H. Kamani, J. Jaafari, Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies, Int. J. Biol. Macromol. 185 (2021) 66–76. https://doi.org/10.1016/j.ijbiomac. 2021.06.081. DOI: 10.1016/j.ijbiomac.2021.06.081 Google Scholar [16] S. Das, S. Mishra, Journal of Environmental Chemical Engineering Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach, Biochem. Pharmacol. 5 (2017) 588–600. DOI: 10.1016/j.jece.2016.12.034 Google Scholar [17] K. Dash, N.K. Hota, B.P. Sahoo, biopolymers Fabrication of thermoplastic polyurethane and polyaniline conductive blend with improved mechanical , thermal and excellent dielectric properties?: exploring the effect of ultralow-level loading of SWCNT and temperature, J. Mater. Sci. 55 (2020) 12568–12591. DOI: 10.1007/s10853-020-04834-w Google Scholar [18] S. Wang, H. Gao, Y. Jin, X. Chen, F. Wang, H. Yang, L. Fang, X. Chen, S. Tang, D. Li, Defect engineering in novel broad-band gap hexaaluminate MAl 12 O 19 ( M ? Ca , sr , Ba ) -Based photocatalysts Boosts Near ultraviolet and visible light-driven photocatalytic performance, 24 (2022). DOI: 10.1016/j.mtchem.2022.100942 Google Scholar [19] L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021). DOI: 10.1016/j.mtcomm.2021.102155 Google Scholar [20] S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, L. Fang, V. Jagadeesha Angadi, Z. Yi, D. Li, Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight, Appl. Surf. Sci. 608 (2023). https://doi.org/10.1016/j.apsusc. 2022.154977. DOI: 10.1016/j.apsusc.2022.154977 Google Scholar [21] M. Jharwal, S. Mittal, C. Frsc, M. Singla, Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydroge, (2013). DOI: 10.1007/s10854-012-0933-0 Google Scholar [22] N.A. Rangel-vázquez, R. Salgado-delgado, E. García-hernández, A.M. Mendoza-martínez, Characterization of Copolymer Based in Polyurethane and Polyaniline ( PU / PANI ), (2015). DOI: 10.29356/jmcs.v53i4.979 Google Scholar [23] K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, M.A. Sheikh, XRD studies of chitin-based polyurethane elastomers, Int. J. Biol. Macromol. 43 (2008) 136–141. https://doi.org/. DOI: 10.1016/j.ijbiomac.2008.04.009 Google Scholar [24] D. Paul, S. Paul, N. Roohpour, M. Wilks, P. Vadgama, Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane, J. Funct. Biomater. 4 (2013) 358–375. DOI: 10.3390/jfb4040358 Google Scholar [25] P. Sirajudheen, S. Vigneshwaran, V.C.R. Kasim, M.C. Basheer, S. Meenakshi, International Journal of Biological Macromolecules Mechanistic view of MoS 2 confined chitosan-polyaniline hybrid composite for the photo-oxidation of cationic dyes, Int. J. Biol. Macromol. 249 (2023) 126008. DOI: 10.1016/j.ijbiomac.2023.126008 Google Scholar [26] N.M.Y. Al-mahbashi, S.R.M. Kutty, A.H. Jagaba, A. Al-nini, A.T. Sholagberu, B.N.S. Aldhawi, U. Rathnayake, Sustainable sewage sludge biosorbent activated carbon for remediation of heavy metals: Optimization by response surface methodology, Case Stud. Chem. Environ. Eng. 8 (2023) 100437. DOI: 10.1016/j.cscee.2023.100437 Google Scholar [27] T.R. Sarker, S. Nanda, A.K. Dalai, Parametric studies on hydrothermal gasification of biomass pellets using Box-Behnken experimental design to produce fuel gas and hydrochar, J. Clean. Prod. 388 (2023) 135804. DOI: 10.1016/j.jclepro.2022.135804 Google Scholar [28] J. Prakash Maran, S. Manikandan, V. Mekala, Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box-Behnken design with desirability function, Ind. Crops Prod. 49 (2013) 304–311. DOI: 10.1016/j.indcrop.2013.05.012 Google Scholar [29] K. Vadakkan, R. Gunasekaran, A.A. Choudhury, A. Ravi, S. Arumugham, J. Hemapriya, S. Vijayanand, Response Surface Modelling through Box-Behnken approach to optimize bacterial quorum sensing inhibitory action of Tribulus terrestris root extract, Rhizosphere. 6 (2018) 134–140. DOI: 10.1016/j.rhisph.2018.06.005 Google Scholar [30] S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C. V. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies, J. Colloid Interface Sci. 284 (2005) 78–82. DOI: 10.1016/j.jcis.2004.09.027 Google Scholar [31] T.A.O.K. Meetiyagoda, T. Takahashi, T. Fujino, Response surface optimization of chemical coagulation for solid–liquid separation of dairy manure slurry through Box–Behnken design with desirability function, Heliyon. 9 (2023) e17632. https://doi.org/10.1016/j.heliyon. 2023.e17632. DOI: 10.1016/j.heliyon.2023.e17632 Google Scholar [32] R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, Bioresour. Technol. 99 (2008) 2938–2946. DOI: 10.1016/j.biortech.2007.06.027 Google Scholar [33] S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol. 42 (2005) 265–271. https://doi.org/10.1016/j.seppur. 2004.09.001. DOI: 10.1016/j.seppur.2004.09.001 Google Scholar [34] H. Rashidi, P. Rasouli, H. Azimi, A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent?: Microcontactor mass transfer study Sum of Squares, Energy. 244 (2022) 122711. DOI: 10.1016/j.energy.2021.122711 Google Scholar [35] H. Luo, J. Jiang, Arramel, M. Li, K. Sun, Y. Zheng, Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries, J. Colloid Interface Sci. 654 (2024) 289–299. DOI: 10.1016/j.jcis.2023.10.029 Google Scholar [36] F.D.S. Gorza, G.C. Pedro, J. Romário, J.C. Medina-llamas, J.J. Alcaraz-espinoza, A.E. Chávez-guajardo, C.P. De Melo, Journal of the Taiwan Institute of Chemical Engineers Electrospun polystyrene- ( emeraldine base ) mats as high-performance materials for dye removal from aqueous media, J. Taiwan Inst. Chem. Eng. 82 (2018) 300–311. DOI: 10.1016/j.jtice.2017.10.034 Google Scholar [37] S. Zhai, R. Chen, J. Liu, J. Xu, H. Jiang, N-doped magnetic carbon aerogel for the efficient adsorption of Congo red, J. Taiwan Inst. Chem. Eng. 120 (2021) 161–168. DOI: 10.1016/j.jtice.2021.03.002 Google Scholar [38] A. Jonderian, M. Ammar, H. El-Rassy, M. Al-Ghoul, Combined experimental and DFT study on the adsorption of congo red dye using self-assembled hierarchical microspheres of lanthanum hydroxide, Colloids Surfaces A Physicochem. Eng. Asp. 681 (2024) 132728. DOI: 10.1016/j.colsurfa.2023.132728 Google Scholar [39] V. Subbaiah Munagapati, H.Y. Wen, A.R.K. Gollakota, J.C. Wen, C.M. Shu, K.Y. Andrew Lin, Z. Tian, J.H. Wen, G. Mallikarjuna Reddy, G. V. Zyryanov, Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties, J. Mol. Liq. 345 (2022) 118255. DOI: 10.1016/j.molliq.2021.118255 Google Scholar [40] V.S. Munagapati, D.S. Kim, Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite, Ecotoxicol. Environ. Saf. 141 (2017) 226–234. DOI: 10.1016/j.ecoenv.2017.03.036 Google Scholar [41] E.N. Seyahmazegi, R. Mohammad-Rezaei, H. Razmi, Multiwall carbon nanotubes decorated on calcined eggshell waste as a novel nano-sorbent: Application for anionic dye Congo red removal, Chem. Eng. Res. Des. 109 (2016) 824–834. https://doi.org/10.1016/j.cherd. 2016.04.001. DOI: 10.1016/j.cherd.2016.04.001 Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved