《科学家实现氮-甲基吡咯啉的微生物合成》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-04-06
  • 1月29日,美国化学学会ACS Synthetic Biology 杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室肖友利研究组和周志华研究组等合作完成的题为Building Microbial Hosts for Heterologous Production of N-methylpyrrolinium 的研究论文。

      以N-甲基吡咯啉为生物合成关键共同中间体的(降)托品生物碱如(东、山)莨菪碱、打碗花精等具有重要的生物活性及临床药用价值。这些生物碱目前主要是通过本源植物的传统提取方法获得,而基于合成生物学的微生物异源合成技术为药用天然产物的制备提供了新策略。N-甲基吡咯啉的生物合成以L-鸟氨酸为前体,经过鸟氨酸脱羧酶催化得到腐胺,腐胺进一步被胺氧化酶氧化脱氨形成N-甲氨基丁醛,随后经过希夫碱式自发反应生成N-甲基吡咯啉。为了构建异源合成N-甲基吡咯啉的底盘细胞,肖友利研究组平羽和周志华研究组李晓东等研究人员进行了以下研究:1)首先解析了药用植物来源三分三的胺氧化酶AaDAO2及AaDAO3的生化功能,并耦联古柯来源鸟氨酸脱羧酶EcODC及山莨菪来源的腐胺-N-甲基转移酶进行体外酶催化一锅法合成,筛选出由EcODC、AtPMT及AaDAO3组成的体外合成N-甲基吡咯啉的最优催化模块;2)进一步将此模块中的三个结构基因导入大肠杆菌及酿酒酵母中构建相应的底盘细胞并进行摇瓶发酵测试,成功获得目标化合物N-甲基吡咯啉的产量分别为3.02及2.07mg/L的大肠杆菌和酿酒酵母底盘细胞;3)在此基础上,为进一步提高产量,该研究还敲除了酵母底盘细胞中N-甲基吡咯啉的竞争代谢途径相关酶ALD4、ALD5及HFD1,同时通过过表达SAM2加强了合成途径关键酶AtPMT催化所需辅因子SAM的合成,最终酵母底盘细胞中N-甲基吡咯啉的产量达到17.82 mg/L,相比原始菌株提高了8.6倍。该研究首次构建了异源合成N-甲基吡咯啉的微生物底盘细胞,为以N-甲基吡咯啉为前体的药用生物碱的未知合成途径的解析及异源合成奠定了重要基础。

      该研究工作也得到浙江中医药大学教授开国银的合作支持以及中国科学院项目经费的资助。代谢物质谱和小分子核磁的测试表征工作得到分子植物卓越中心公共技术服务中心代谢组学与蛋白互作技术平台的支持。

相关报告
  • 《科学家认为合成生物学已走向无细胞化》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-11-22
    • 8月7日,BMC Biology期刊发表了一篇合成生物学领域的文章,文章重点讨论了无细胞系统(Cell-free systems,CFS)将如何实现新技术并加速生物工程即将到来的革命。 在传感器开发方面,CFS的转录和翻译特性可用于宿主基因电路传感器,检测具有精确灵敏度和特异性的小分子和核酸;在治疗药物开发领域,无细胞生物制造十分适合疫苗生产,它可迅速扩大规模以应对突发公共卫生事件。 文章预计无细胞系统领域的研究将继续扩大并与其他工程系统合并,或将使合成生物学更加贴近电子学和机器学习。
  • 《惰性微生物对土壤碳汇和氮汇重要性研究》

    • 来源专题:农业立体污染防治
    • 编译者:金慧敏
    • 发布时间:2015-12-17
    • 全世界土壤存储大约有25000亿吨碳,是大气中的三倍(约91700亿吨二氧化碳),然而人类还没有完全理解这种存储机制。最近发表在《自然通讯》的文章认为,惰性微生物依靠它们周围的物质产生酶来降解植物体来生成土壤有机质,主要是通过调节降解速率以及增加土壤微生物残体来进行作用。因此这项研究提供了新的控制机制有助于解释土壤大量存储碳和其他养分的机理。 土壤微生物降解植物和其他有机质,在这个过程中释放二氧化碳和可溶性无机氮,如铵态氮和硝态氮。然而,总有一些含有碳、氮和矿物质的有机质被固存在土壤中,这其中有某种机制阻止了它们进一步降解。 很长一段时间,科学家们认为微生物不能降解某些复杂的分子结构,然而最近的试验表明微生物可以降解所以的有机质。问题是,既然微生物具备降解几乎所以东西的可能性,为什么会停止呢? 尽管微生物具有强大的降解能力,一些微生物恰恰相反,它们依赖邻居释放酶启动降解过程,分解大块有机质为小块。由于依赖邻居启动第一步降解过程,这种微生物可以保存能量。通过研究人员的电脑模拟,这种“欺骗性的”微生物放缓了有机质的降解速度,它们的存在增加了土壤富氮微生物物质的含量。