《基于鬼成像算法的电子显微镜增强成像》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-05-22
  • 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能够分辨的纳米尺度,显微成像技术让人类不断突破对微观世界的认知极限。但像差的存在会降低图像的质量和分辨率,是电子显微镜中一个常见的问题。为了改善这一现状,通常需要额外的相位和振幅控制。

    基于此,格拉斯哥大学Kallepalli实验室的Akhil Kallepalli所带领的研究团队从光学角度出发,设计了一种新的鬼成像算法,从而能够在较低的光通量照明下产生具有更高分辨率和对比度的图像,同时可以有效降低对样品的损伤。该研究以“Challenging Point Scanning across Electron Microscopy and Optical Imaging using Computational Imaging”为题发表在 Intelligent Computing 上(DOI: 10.34133/icomputing.0001)。

    如果想要更好地控制照明相关参数,通常需要采用光学调制手段。光学调制是将信息加载到光载波上,使光的参量包括振幅、频率、相位等,发生变化的过程。它可以用于光通信系统以及各种应用,比如光通讯、光谱学、光成像等。在光学领域中,调制器的种类很多,按调制方式可分为声光调制器、电光调制器、磁光调制器等。然而,在电子显微镜中则无法使用光调制器。因此,在电子显微镜领域,实现复杂的相位和振幅调控以减小相位像差实现连续成像仍然是一个挑战。

    因此,研究团队将鬼成像技术应用到电子显微镜中,并设计了一种新的算法来解决这个问题。该算法对跨越两个电磁区域(光波长和电子束)的非正交照明策略具有稳定性。同时在该系统中,可以使用数值光束传播技术来计算物体平面中光场的最终分布,从而实现无透镜和远场成像。因此,计算鬼成像可用于透射电子显微镜成像。

    在光学方法中,空间光调制器可以有效保证成像模式的正交性。但使用自然散射或高度受限的调制器时,则很难保证图案之间的正交性。该团队设计的新算法使模式在不考虑其正交性的情况下得到最佳利用,他们称这种新方法为“正交化鬼影成像”。

    研究团队首先通过一个类似于透射电子显微镜系统的光学实验验证了光照策略和算法对非正交性的稳定性。然后又采用了透射电子显微镜进行了测试。与传统的鬼成像算法相比,该团队所提出的算法所构建的图像具有更高的分辨率和对比度。新算法增强了在任意波长下的成像能力,并且对模式集的非正交性具有稳定性,可以有效地应用于光学显微镜和电子显微镜。

    在已发表的论文附录中,作者强调了一些与电子显微镜样品损伤有关的发现:使用他们的方法可以减少这种损伤。 在未来,团队计划进一步优化光学和电子显微镜成像的分辨率和速度。

相关报告
  • 《阿秒电子显微镜研究取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-11-13
    • 电子显微镜为人们提供了深入观察物质微小细节的途径,例如材料的原子排列,蛋白质的结构,以及病毒粒子的形状等。然而,自然界中大多数材料并非静止,而是彼此之间相互作用,时刻都在运动、重组。最常见的例子之一就是光与物质的相互作用,这种相互作用在植物、光学元件、太阳能电池、显示器以及激光中都普遍存在。这种相互作用由围绕光场周期移动的电子定义,发生在飞秒(十的负十五次方秒)甚至阿秒(十的负十八次方秒)量级上。尽管超快电子显微镜技术可以观测飞秒量级上某些过程,然而直到近日,电子显微镜技术仍未实现阿秒量级上光与物质相互作用的观测。 近日,来自康斯坦茨大学和德国慕尼黑大学的一组科学家们成功将透射电子显微镜和连续激光器相结合,制造出一台阿秒电子显微镜的原型(Attosecond Transmission Electron Microscope, A-TEM)。此项研究结果发表在最新一期的Science Advances上。 图1 (左)阿秒透射电子显微镜;(右)连续激光(红色)与电子束(蓝色)在薄膜处发生相互作用,激光将电子调制成阿秒脉冲序列 调制电子束 “光学、纳米光子学以及超材料学中的基本现象都在阿秒量级上发生,比光波的一个周期还短。”本文的主要作者、康斯坦茨大学物理系光和物质课题组负责人的Peter Baum教授说。“因此,要想对光和物质之间的超快相互作用进行成像,时间分辨率需要低于光波一个振荡周期。”传统的透射电子显微镜使用连续电子束照射标本,进而成像。而Baum的团队则使用连续激光器的快速振荡对显微镜内的电子束进行调制,用电子束脉冲成像。 超短电子脉冲 这项研究的核心技术是一张薄膜,研究人员用它来破坏激光束光学周期的对称性,使得显微镜中的电子历经一系列快速加速、减速过程。“最终,电子显微镜中的电子束被转换成一系列超短电子脉冲,脉冲时间短于激光束光学周期的一半。” 本文的第一作者、博士后研究人员Andrey Ryabov说。从激光源中分束出的另一束激光,用于激发样品,使之发生光学变化;超短电子脉冲随后探测样品和样品对激光的响应。通过扫描两束激光之间的时间差,研究人员就能够以阿秒分辨率,捕获标本内部电磁动态变化的连续镜头。 技术修改简单,意义重大 “这项技术的主要优点是,可直接利用电子显微镜内已有的连续电子束,而不必增加新的电子源。这意味着每秒可以有100万倍以上的电子,基本上是光源的最大亮度。这样的优点对任何实际应用都是非常关键的。”Ryabov继续说道。另一个优点是所需的技术修改相当简单,不需要重新配置电子枪。 有了这项技术,在整个时空成像技术范围内实现阿秒分辨率将成为可能。比如时间分辨全息术、波形电子显微镜以及激光辅助电子光谱学等。从长远来看,阿秒电子显微镜将有助于揭示复杂材料和生物物质中光与物质相互作用的原子机制。
  • 《美国国家标准与技术研究院(NIST)旨在通过减少扫描电子显微镜(SEM)的不确定度来增强其实用性》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-05-07
    • 使用扫描电子显微镜(SEM)的电子束辅助成像技术来检测微型芯片上最微小的缺陷,长期以来一直是半导体行业健康发展的基石。但是,随着该行业不断将芯片组件小型化(对于计算机、植入式药物分配器、手机和其他新型设备的研发至关重要),对SEM图像中更详细信息的需求也在不断增加。 尽管扫描电子显微镜(SEM)精细的原子级分辨率几乎没有改进的余地,但美国国家标准与技术研究院(NIST)的研究人员在CHIPS测量计划的资助下,已开始一项多年研究,旨在减少基于SEM图像数据的测量结果中的不确定性。为此,NIST物理学家约翰·维亚鲁比亚(John Villarrubia)及其同事正在开展一系列实验,研究人员企图让SEM中的电子从不同的材料上散射。该研究团队希望通过将散射实验的结果与理论值进行比较,从而在SEM图像和所研究对象的特征之间建立更精确的联系。 扫描电子显微镜(SEM)通过用一束聚焦的电子束扫描样品表面来生成样品的原子级分辨率的图像。电子束与样品之间的相互作用会生成从样品中逸出的具有广泛能量范围的额外电子。其中能量最低的电子,称为次级电子,对于创建SEM图像至关重要,因为它们来自于样品表面或表面以下不远处,并且携带有关表面特征的大部分信息。能量更高的电子(能量超过50电子伏特的电子)对表面的敏感性较低,因为它们中的大多数由来自源光束的电子组成,这些电子因与材料深处的原子核碰撞而被反向散射。 确定究竟产生了多少次级电子,以及探测器实际记录了多少次级电子,是正确解读扫描电子显微镜(SEM)图像的关键。然而,精确计算这两个数字并非易事。 例如,从样品凹陷处产生的次级电子可能会被周围的材料重新吸收,而不是到达检测器。另一方面,从倾斜区域逸出的次级电子比水平区域更多。为了正确解读扫描电子显微镜(SEM)图像数据中表面特征的真实大小和形状,必须考虑这些影响。然而,物理学家们对电子散射过程,特别是在低能级下的散射,知之甚少,这就导致在对扫描电子显微镜(SEM)生成的图像数据进行解读时存在很大的不确定性。 “由于我们对电子散射的知识很欠缺,并且可能还存在一些错误认知,因此计量学家用来解读扫描电子显微镜(SEM)图像的数学模型也会存在这些问题,” Villarrubia说。 为了确保他们全面考虑了SEM图像中的所有次级电子因素,他与他的NIST合作者奥尔加·里德泽尔(Olga Ridzel)和格伦·霍兰德(Glenn Holland)设计了一个更简单但新颖的散射实验。在他们的研究中,将有一束电子撞击样品表面,产生次级和反向散射电子,就像扫描电子显微镜(SEM)的工作方式一样。 但是,该实验在两个重要方面与扫描电子显微镜(SEM)研究有所不同。首先,该样品表面被制造成完全平坦的状态,这使得分析散射电子的强度和能量变得更加容易。其次,样品将被放置在一个被称为延迟场分析仪(RFA)的装置中,该装置可以根据能量过滤反向散射电子和次级电子。通过调整滤波器,使得只有高于某一特定阈值能量的电子才能到达探测器,该操作可以高精度地测量次级电子的总数,以及特定能量范围内的次级电子数。 该团队计划使用在扫描电子显微镜(SEM)工作范围内的不同光束能量重复这些测量。研究人员还将对以不同角度倾斜的平坦表面的样品进行相同的测量,以评估改变斜率将如何影响收集到的电子数量。 然后,科学家们将把他们的测量结果与各种电子散射理论模型的预测结果进行比较。Villarrubia说,其中一种可能性是,现有的某个模型可能被证明是正确的。但他指出,更有可能的是,这种比较的结果“会证明即使是我们最好的物理模型依然是不准确”。最后,这些新数据将成为改进新的和现有的电子散射模型的基础数据集,以便该团队用这些新数据对电子散射实验的结果进行比较研究。 一旦研究人员确定了最佳模型,就可以将其应用于利用电子显微镜(SEM)的电子束扫描晶体管或其他具有不规则表面的芯片组件时发生的更复杂的散射过程的研究。 企业用户最终将可以确信他们所依赖的扫描电子显微镜(SEM)图像能够真正确定样品表面裂缝的实际大小、或者仅相当于十个氢原子大小的孔的宽度,乃至集成电路中逻辑门的形貌等等。