《有机废水及污水处理工艺与装置》

  • 来源专题:水体污染与防治领域信息门户
  • 编译者: 徐慧芳
  • 发布时间:2006-04-12
  • 本发明用混凝沉淀的方法处理有机废水或城市污水,然后对沉淀污泥用厌氧方法进行处理,对于仅用混凝沉淀方法达不到预期目的的污水,可在其后用生物膜法进行好氧处理,可免去或减少好氧处理部分,克服了活性污泥法等方法的设备容量大、运行成本高的缺点,从而达到快速、自动化程度高、投资成本和运行成本较低的效果,同时还可以实现混凝剂的再生利用,进一步降低成本,因而具有广阔的应用前景。
  • 原文来源:http://www.cnpatent.com/check/show.asp?id=99122029
相关报告
  • 《工业污水及实验室废水处置工艺探讨》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-12-17
    • 由于目前我国的经济发展势头十分迅话,而我国的工业生产又长期以来是处于低产出、低效率、高消耗、高投入,资源的最费极为严重。废水和污染物的排放量极大,这样就导致了我国生态环境日益著化水环境污染十分的产量。因此加强工业污水和实验室废水处理方法及发服趋势的探讨就显得尤为重要,本文就工业水处理新工艺进行了深入的探过,具有一定的参考价值。 关键词:工业污水、实验室废水、处理工艺和方法 随着经济的发展和科技的进步,当今各大城市的科研单位和高等院校进行的科研实验越来越深入、广泛,从实验室以及工厂中排放的废水相对增多,废水的水质相当复杂。此类废水的排放周期不定,排放水量也无规律性,且所含污染物成分较为复杂,除含有洗涤剂及常用溶剂等有机物外,还有较多的酸碱,有毒有害的有机物(三致物、酚和环境激素类物质等)以及重金属,而且含有许多新生物质,性质很难确定。实验室废水水量相对较小,但如果不加处理就外排将对环境造成极大的污染,然而经过调研,发现许多科研实验室对产生的废水仅仅是简单的处理,其至不作任何处理就排放,工业污水的排放量不仅巨大而且处理工程极其简单,根本达不到污水排放的要求。为了进步加强对实验室以及工厂的污水排放管理,研究废水综合治理的方法与处理效果好、技术先进、投资较少的设备势在必行。 一、工业污水以及实验室废水分类 工业污水的分类有以下三种: 第一种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。 第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。 第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。 实验室废水的分类: 二、实验室废水按污染程度可分为高浓度和低浓度实验室废水。高浓度实验室废水主要成分为液态的失效试剂(废洗液、废有机溶剂、废试剂等),液态的实验废弃产物或中间产物(如各种有机溶剂、离心液,液体副产品等);低浓度实验室废水指实验室过程中排放的浓度与毒性较低的实验用水,以及各种洗涤液(产物或中间产物的洗涤液,仪器或器具的润洗液和洗涤废水等),毒性小,浓度低的废试液,以及用作冷却、加热用途的水。 根据废水中所含主要污染物性质,可以分为有机和无机实验室废水两大类。无机废水主要含有重金属、重金属络合物,酸碱,氰化物,硫化物,卤素离子以及其他无机离子等。有机废水含有常用的有机溶剂,有机酸,醚类,多氯联苯,有机磷化合物,酚类,石油类,油脂类物质。 二、废水的处理方法 1.离子交换法:离子交换法的主要工作状态就是应用离子交换剂与废水中的有害离子进行交换,从而达到消除废水中有害离子的目的。并且其方法应用于重金属废水处理中,还可以回收其中的重金属离子。因此该方法具有治理效果好、可回收有效物质、简单高效的应用优势。但是在实际的废水治理过程中,该方法由于受到交换剂、成本等因素的影响,其废水处理范围极为的有限,而且该方法对废水的预处理要求较高,不适用于大量的废水治理。 2.反渗透和电渗析法:反渗透和电渗析法在所有的物化处理中,其废水处理效果最佳,并且处理后的水可实现循环应用,但是其使用成本较高,无法适应于大批量的废水处理,该方法应用十分的有限。 3.电解还原法:上文中已经明确地指出物化处理工艺的主要功能剥离水中的金属离子,因此这些物化处理方法的功效也是消除废水中的金属离子,其中电解还原法主要是消除废水中的阳离子污染。电解还原法的主要工作方法就是利用铁板电极,在直流电的影响过程中,铁板不断溶解出亚铁离子。而且,废水中的氢离子也在不断地减少,使废水中的 pH 值不断地增大,此时的废水呈高碱性,在这样的环境中重金属离子会与废水中的氢氧根离子结合,产生氢氧化物沉淀,也阻止了废水碱性的持续上升,保证了重金属离子的独立。 并且这些独立的重金属离子会与阳极溶解的 Fe3 +、Fe2 +产生反应形成 Fe(OH)3 和 Fe(OH)2,并且这些物质对于水中的胶体物质能够产生很强的凝聚 性和吸附性,实现净化水质的目的。 但是采用电解还原法处理水中的废金属离子时,需要大量的电能以及钢材,成本较高。如果在废水中加入适量的食用盐可减少电能的消耗,但也增加了废水中的含盐量,导致处理后的废水不能循环使用。因此电解还原法应用范围十分的有限。 4.铁盐-石灰法:铁盐-石灰法在废水物化处理中应用的最为广泛,其中不仅可有效处理废水中的镉、铬、砷等污染物,还拥有较高的经济效益,处理成本较低、投资小等特点。在铁盐-石灰法中,也会在废水中产生 Fe(OH)3 和 Fe(OH)2,聚集和吸附水中的胶体物质,并且在消除废水中的镉、铬时,铁盐又可以作为共沉剂使用,并且对废水中的 Cr6+离子也具有很好的处理效果。铁盐-石灰法在应用的过程中产生大量的沉渣,但具有较为广泛的应用范围。 三、工业污水和实验室废水的处理工艺 由于废水中含有大量的重金属,如果直接进入焚烧处置,势必会对大气造成污染,因此最终采用了物理化学法来处置该危险废物。物化主要目的是通过物理化学的方法去除废水中 的 色 度、CODcr及 重 金 属,使处理后的水达到GB8978—1996《污水综合排放标准》三级排放标准[9]。通过多次实验比较,其中分别进行了絮凝沉降法、芬顿氧化法、次钠氧化法、亚铁/石灰法絮凝沉降法、脱色剂+絮凝沉降法等各类实验方法。观察出水的情况及数据分析,最终确定采用脱色剂+絮凝沉降+Fenton氧化法。 废水工艺的设计原理:脱色剂采用杭州银湖化工有限公司季铵型阳离子高分子聚合物,利用其极强的吸附能力,易吸附较大分子的染料分子,通过絮凝沉降达到脱色及去除部分CODcr的效果。但脱色剂本身是高分子聚合物,投加过量时会增加废水中CODcr的含量。因此要选择合适的投加量,既能达到脱水效果,又不会增加废水中CODcr的含量。脱色后的废水呈淡红色,而且CODcr在5g/L,不能直接排放,所以必须进行Fenton氧化,去除剩余的色度及CODcr。 重金属废水物化处理应用:根据上述设计原则本文以含有重金属离子的生产废水为例,使用物化和生化组合处理工艺。其中物化系统去除重金属离子,物化后的废水进入生化系统(废水进入生化系统时和厂区生活污水一并处理,从而提高B/C比,有利于生化反应。为提高设备利用率,同时减小设备体积,工艺设计拟采用连续工作方式。并且废水来源决定了其水量、水质波动不大,因此物化处理设施前端设置了一个调节池,随后采用了调节pH值、还原、中和、混凝、浓缩沉降,过滤等措施。 四、结束语 当前,我国的危险废物处置都还处于发展阶段,其中危险废物处置中心的技术水平参差不齐,并且还存在处置设备利用率不高、运行成本较大以及处理不彻底产生再污染等问题。因此,各危险废物处置中心应该提高现有的处理技术,在保证处理质量的同时,还要结合经济效益。本文简单介绍了废水处理系统中物化处理工艺的运用,旨在提高废水处理效果,实现经济的可持续发展。
  • 《化工工艺及其废水处理的研究简述》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2018-12-18
    • 摘要:煤化工生产操作中,因由此而产生的废水在成分上比较复杂,如果未经处理,而是直接选择外排,那么由此便会导致十分严重的后果,即造成严重污染。所以,需针对此情况,强化行之有效的处理措施。本文以某煤化工企业为例,采用活性焦方案,对此企业生产当中所产生的污水进行预处理,此外,结合该企业实况,提出了更具针对性、更有实效性的固态污染物处理改进方法,通过闭式循环处理工艺的合理化构建,推动此企业煤化工在废水方面零排放的实现。 关键词:煤化工废水;预处理;工艺改进 1 副产品分离工艺 煤化工气化洗涤等原料污水首先进至污水槽,经自然沉淀之后,分离出机械杂质及油等,经原料污水泵,实施升压操作后,便有由此而分成两路,分别进至塔内,在塔内完成脱酸操作,另实施脱氨操作。对于其中的一路来讲,则经换热器,以换热的方式,进行相应水循环,然后实施冷却操作,直至温度达35℃时而止。经上述操作的水,便会被实施脱酸、脱氨操作,重新送至塔内,持续进料,通过此操作,便能够对塔顶相应温度,施加准确、深入的调整与控制;而针对另一路而言,则分别进行了三次的换热操作,换热之后的温度达到了150℃,此时,便将其当作汽提塔热进料。对于塔顶而言,经其分流而得到的酸性气体,比如H2S、CO2等,经冷却器,便会随即被冷却,然后,再经过分液罐,实现分液,对于最后所得气体,则会被送至火炬,对于此时的分凝液而言,便会重新回到酚水罐。针对经塔顶而流出的气相来讲,如若其还有比较低的含氨量及含水量时,可以不经过冷却,而被直接送至火炬或进气柜。 2 存在的问题 当运行持续一段时间后,在运行过程中得知其存在不稳定状况,尤其是换热器部分,产生有非正常的结垢状况,在温度上,也没有达到原先设定的既定温度。除此之外,在具体的蒸汽耗量方面,也发生持续变动,呈连续性、不稳定性的上升趋势;从脱酸脱氨塔角度来考量,对于其内部来讲,由于存在十分严重的结垢情况,因此,受此影响,浮阀塔件出現严重的堵塞,这样一来,会对初期水质相应处理,造成研制与影响。此装置在实际运行中,运行周期不足1个月,后期存在逐渐缩短的运行周期。经分析得知,造成此情况的原因为:选用质量不佳的煤炭所致。因煤质在灰分方面的持续上升,煤气当中含有较大量的灰量,造成污水当中的有机悬浮杂质及含尘呈现出持续上升趋势,在升温中,换热设备的大部分表面,均会出现不同程度的沉积状况,形成复合水垢,当这些水垢的日益堆积,便会堵塞换热器,使其处于非畅通状态,进而对装置的正常运行造成严重影响。 3 解决方法 在解决办法上,可选用一些时下比较新型的塔内件,用此予以替换,对于换热器,则需要及时进行全面清理,此外,针对结垢的温度而言,还需进行细致辨别,另对其出现条件进行深入判别。在实际运行操作中,可选择那些深度预处理手段,对过滤装置进行强制处理,最大程度减少或降低水当中的无机盐类物质,另外,还需采取有效措施,最大化降低悬浮物类结垢,将部分间接加热更改为直接加热。 4 基础原理分析 4.1 深度预处理强制过滤装置 当前,较多使用的活性炭来讲,在具体的性能方面,性焦在结构上,由于有着比较发达的中孔,在具体的性能指标上,则突出表现为碘值降低,但糖蜜值及亚甲蓝值大幅增加,进而在实际应用中,其突出特性为:能吸附大分子,另外,还可吸附长链有机物。由于在此方面存在一些先天性资源优势,在生产效率与成本上,相比于破碎炭,均存在一定优势,在售价上仅为活性炭的一般,因此,从原料成本方面来考量,能够实现工艺运行成本的大幅降低。活性焦能够对水中的溶质持续性吸附,直至吸附处于相应平衡状态。从温度方面来分析,如若保持不变,当实施吸附操作且处于平衡状态时,那么此时的单位重量活性焦吸附而言,其与水中溶质,在具体的浓度方面,所构成的曲线关系,便为行业内经常提到的吸附等温线。其曲线公式为:X/M=kC1/n,公式当中,M表示所加活性焦重量;X表示活性炭吸附的溶质量;k与n均表示试验所得到的常数;C表示水中溶质浓度。 4.2 活性焦在水处理中的应用 针对活性焦而言,其在生活用水中最大运用,用于除去其臭味。水库水、湖泊长期处于非流动状态时,便会出现臭味,而沼泽水会出现土味,运用活性焦能够将这些气味有效去除。当前,以粉状活性焦较为多用,将其投入混凝沉淀池,这样一来,其便会由特定管路,与污泥一道外排。对于活性焦而言,其可将水中的有机物,以及产生臭味的物质去除,比如洗涤剂、三卤甲烷、酚、苯、氯等。另外,针对铋、锡、汞、铅、铬酸根、氰、锑等离子,同样具有较好的吸附能力。针对本工艺来讲,选用的设备为将粒状活性焦当作滤料的过滤器,在实际运行当中,需对其进行定期性的反复冲洗,实现悬游物的最大化去除,避免水头损失。针对移动床当中处于失效状态的炭来讲,则会经池底而外排,而新的活性焦则会及时给予补充。粒状活性焦吸附容量耗尽之后的再生,通常情况下,所选用的方法为加热法,烘干废焦之后,于850℃下,实施细致化的再生炉内焙烧。对于颗粒活性焦而言,其每次的损耗约5~10%,此外,在具体的吸附容量上,逐渐减少。对于活性焦而言,其能够最大化降低进至换热器当中的悬浮物,另外,还能减少有机物的含量,进而发挥出其所具有的预处理保护的作用,使污水处理核心装置始终处于正常运行状态。此外,向固态污染物转化的活性焦,还是一种较好的循环流化床燃料,能够最大化消除对环境所造成的污染。 5 结语 综上,经上述改在后,装置运行均较稳定,在前期投资成本方面也不大。实施预处理操作之后,在出水的水质方面比较优良,符合相关规定与要求。这便为排放达标奠定了坚实基础。本文通过对煤化工废水预处理工艺进行适当性改进,无论是处理效率还是质量效果,均得到较大提升,具有良好的应用价值。