《Nature | CRISPR 效应子 Cam1 介导噬菌体防御的膜去极化》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-01-15
  • 2024年1月10日,洛克菲勒大学等机构的研究人员在Nature上发表了题为The CRISPR effector Cam1 mediates membrane depolarization for phage defence的文章。

    原核 III 型 CRISPR-Cas 系统使用 CRISPR 相关罗斯曼折叠 (CARF) 蛋白效应子提供对病毒和质粒的免疫力。使用与CRISPR RNA向导互补的序列识别这些入侵者的转录本会导致环状寡腺苷酸第二信使的产生,其结合CARF结构域并触发效应结构域的活性。虽然大多数效应子会降解宿主和入侵者核酸,但预计有些效应子含有没有酶促功能的跨膜螺旋。这些CARF-跨膜螺旋融合蛋白是否以及如何促进III型CRISPR-Cas免疫反应仍未知。

    该研究表明了环状寡腺苷酸活化膜蛋白 1 (Cam1) 在 III 型 CRISPR 免疫中的作用。结构和生化分析表明,Cam1二聚体的CARF结构域结合环状四腺苷酸第二信使。在体内,Cam1 定位于膜上,预计形成四聚体跨膜孔,并通过诱导膜去极化和生长停滞来防御病毒感染。这些结果表明,CRISPR免疫并不总是通过核酸的降解起作用,而是通过更广泛的细胞反应来介导。

  • 原文来源:https://www.nature.com/articles/s41586-023-06902-y
相关报告
  • 《王艳丽组揭示噬菌体防御CRISPR-SpyCas9的分子机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-01-08
    • 2018年12月31日,《Molecular Cell》杂志在线发表了中国科学院生物物理研究所王艳丽课题组在CRISPR-Cas系统取得的最新研究进展。标题为“Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race”。该研究工作成功解析了Anti-CRISPR 蛋白 AcrIIA2与Streptococcus pyogenes Cas9 (SpyCas9) 蛋白及single-guide RNA (sgRNA) 的三元复合物3.3 埃的晶体结构,并结合体内和体外的功能实验,系统地阐述了噬菌体运用Anti-CRISPR 蛋白防御CRISPR-SpyCas9系统的分子机制。王艳丽课题组一直致力于CRISPR-Cas系统抗病毒作用机理的研究,前期研究揭示了一系列重要的CRISPR-Cas系统的作用机理 (Nature 2014, Cell 2015, Cell Res. 2016, Cell 2017a, Cell 2017b, Mol. Cell 2017, Cell 2018);该工作是王艳丽课题组首次在Anti-CRISPR蛋白防御CRISPR-Cas系统作用机理的研究上取得的重大突破。  CRISPR/Cas系统是古菌和细菌的抵抗病毒和质粒侵染的重要免疫防御系统。CRISPR-Cas系统划分为两大类,第一大类CRISPR-Cas系统由多亚基组成的效应复合物发挥功能;第二大类是由单个效应蛋白(如Cas9, Cas12a, Cas12b, Cas13等)来发挥功能。其中,Cas9, Cas12a, Cas12b均具有RNA介导的DNA核酸内切酶活性, Cas13a具有RNA介导的RNA核酸酶活性。面对细菌的免疫系统(CRISPR-Cas),噬菌体也相应的进化出了自己的防御系统(Anti-CRISPR)。2017年首次发现了Listeria monocytogenes 噬菌体来源的四个Anti-CRISPR蛋白,AcrIIA1, AcrIIA2, AcrIIA3 和AcrIIA4。研究发现AcrIIA2和AcrIIA4蛋白在细胞内能够抑制SpyCas9的基因编辑活性。随后的结构和功能研究表明AcrIIA4通过阻断DNA与SpyCas9的结合来抑制SpyCas9的功能,然而AcrIIA2抑制SpyCas9活性的分子机制一直未能阐述清楚。  在该研究中,研究人员首先通过生化实验发现AcrIIA2只与结合有sgRNA的SpyCas9二元复合物结合,并不与自由状态下的SpyCas9结合,也并不与同时结合有sgRNA和dsDNA的SpyCas9三元复合物结合。为了研究AcrIIA2直接抑制SpyCas9活性的分子机制,研究人员利用X-ray晶体学的方法成功解析了AcrIIA2-SpyCas9-sgRNA的三元复合物晶体结构 (3.3 埃)。结构发现AcrIIA2是由三个α螺旋及一个β折叠组成的紧凑结构,它结合在SpyCas9的一个带正电荷的凹槽区域。该区域由PI, HNH, WED, 和 REC2 结构域形成。PI结构域上R1333和R1335是识别dsDNA的PAM序列的关键氨基酸,AcrIIA2通过与R1333和R1335形成稳固的氢键从而阻断SpyCas9对PAM序列的识别,进而阻止SpyCas9对dsDNA的结合。而AcrIIA2的α1螺旋与HNH结构域的相互作用可以锚定HNH结构域,阻止其结合DNA必须发生的构象变化。另外,通过结构比对分析发现AcrIIA2有大量的带负电荷的氨基酸占据着dsDNA中PAM结合的位置,这表明AcrIIA2模拟带负电荷的DNA与SpyCas9结合从而阻止DNA与SpyCas9的结合。有趣的是,竞争性结合实验表明AcrIIA2并不能取代已经与SpyCas9-sgRNA结合的dsDNA, 而dsDNA也不能取代已经与SpyCas9-sgRNA结合的AcrIIA2。总之,通过结构和功能实验的证明,AcrIIA2主要通过三个步骤来抑制dsDNA的结合。首先,AcrIIA2可以阻断PAM的识别;其次,AcrIIA2占据了dsDNA的结合位点;最后,AcrIIA2通过限制HNH结构域的构象变化来抑制dsDNA的结合。  目前,SpyCas9蛋白作为基因组编辑工具被广泛应用于DNA领域的基因编辑,克服了传统基因编辑技术步骤繁琐、耗时长、效率低等缺点,以其较少的成分、便捷的操作以及较高的效率满足了大多数领域的基因编辑需求,并有着潜在的临床应用价值。但是CRISPR-SpyCas9基因编辑系统也存在着一定的脱靶问题,该研究对Anti-CRISPR 蛋白抑制SpyCas9活性分子机制的阐述为控制或终止SpyCas9活性提供了新的参考和思路。有望将Anti-CRISPR 蛋白开发成新的基因编辑终止工具,实现精准基因编辑。  中国科学院生物物理所王艳丽研究员为本文的通讯作者。王艳丽课题组的刘亮为本文的第一作者,该研究得到科技部、国家自然科学基金以及中国科学院战略性先导科技专项(B类)的资助,上海同步辐射光源(SSRF)以及日本同步辐射光源SPring-8为该研究提供了重要的技术支持。  图注:AcrIIA2-SpyCas9-sgRNA三元复合物的晶体结构  (A)SpyCas9的结构域。  (B)AcrIIA2-SpyCas9-sgRNA三元复合物的结构展示图。
  • 《Nature:揭示噬菌体克服细菌免疫防御新机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-11-14
    • 我们习惯于认为免疫系统是一个独立的实体,几乎是一个独立的器官,但事实要复杂得多。近年来的突破表明单个细菌细胞拥有自己的自主、先天免疫系统,能够识别、定位和处理入侵者。 在一项新的研究中,来自以色列魏茨曼科学研究所、美国丹娜法伯癌症研究院和哈佛医学院的研究人员揭示了病毒克服细菌细胞免疫系统的方式以及这一过程中固有的一种神秘信号分子的化学成分。相关研究结果近期发表在Nature期刊上,论文标题为“Viruses inhibit TIR gcADPR signalling to overcome bacterial defence”。论文通讯作者为魏茨曼科学研究所分子遗传学系的Rotem Sorek博士和丹娜法伯癌症研究院的Philip J. Kranzusch博士。 导致细菌细胞提高它们的免疫防御的病毒被称为噬菌体。噬菌体的工作方式是将它们的DNA注入细菌,操纵细菌细胞将它们复制数十次。接着,新产生的噬菌体杀死了细菌,让它们爆裂,去猎杀附近的其他细菌细胞。然而,细菌并非毫无防备,它们采用了自主免疫系统来对抗这种威胁。 Sorek实验室以前的研究已表明,一种叫做TIR的免疫蛋白片段负责识别噬菌体入侵,一旦检测到噬菌体,TIR就会产生一种神秘的信号分子来触发免疫反应。TIR最初是在植物和动物的免疫系统中发现的,但是Sorek及其研究团队能够证实细菌中也存在类似的机制。然而,这个神秘的信号分子仍然没有被发现。 在这项新的研究中,Sorek团队发现了噬菌体如何能够克服TIR免疫。当研究一组非常相似的噬菌体时,他们吃惊地发现,虽然TIR免疫确实免受其中的一些噬菌体感染,但是其他噬菌体却被证明是胜利者,并成功杀死了细菌。在研究这些胜利的噬菌体时,他们发现它们包含一个特殊的基因,它所编码的蛋白中和TIR免疫,从而使这些噬菌体占据了上风。 当这些作者探究这种如今称为Tad1的蛋白时,他们发现该蛋白在TIR产生这种信号分子后立即捕获了该信号分子。Sorek说,“就好像该蛋白迅速吞下了这种信号分子,不让免疫系统看到它哪怕一丝一毫。这种免疫规避机制从未在任何已知的病毒中出现过。” 这些作者随后意识到,如果这种信号分子被锁在这种噬菌体蛋白内,他们也许能够通过查看这种蛋白的结构来“看到”它。他们能够通过晶体学确定这种信号分子的空间结构和化学成分。 Sorek喃喃自语,“我们寻找这种神秘的信号分子已经好几年了。具有讽刺意味的是,如果没有噬菌体的协助,我们不可能找到它。我们发现了一种新的方式,通过这种方式病毒可以使依赖信号分子的免疫系统失去活性。这种免疫系统并不是细菌独有的---它们存在于植物和人类的细胞中。” 了解噬菌体如何能够适应和进化可能有助于我们更好地对抗细菌免疫系统。Sorek说,“如果感染我们身体的病毒使用与我们在噬菌体中发现的Tad1完全相同的机制,我们将不会感到吃惊。”如果是这样的话,那么它可能会对我们保护自己不受那些诡计多端的病毒侵害的能力产生直接影响。 参考资料: Azita Leavitt et al. Viruses inhibit TIR gcADPR signaling to overcome bacterial defense, Nature, 2022, doi:10.1038/s41586-022-05375-9.