《质子膜水电解制氢催化剂研究获进展》

  • 来源专题:绿色化工
  • 编译者: 武春亮
  • 发布时间:2025-02-12
  • 近日,哈尔滨工业大学(深圳)前沿学部理学院副教授陶有堃团队在质子膜水电解制氢阳极电催化领域取得重要进展。研究团队通过引入钨—氧桥联,解决了铱镍氧电催化剂重构的活性—稳定性难题。相关研究成果发表于《自然·通讯》。
    质子膜水电解制氢具有环境友好、电流密度高、响应快、耐波动等优势,适合与风、光等波动性可再生能源直接耦合,是未来绿氢生产的关键技术之一。
    研究团队基于双重调控策略,通过在铱镍氧电催化剂中利用铱—氧—钨桥联基团,实现对催化剂表面重构以及析氧反应路径的调控优化。在研究中,团队针对氧化钨与氧化铱难溶性问题,采用镍辅助铱钨电沉积脱合金方法,实现对纳米氧化铱原子尺度均匀钨—氧掺杂。
    同时,通过原位分析结合理论计算,科研团队发现铱—氧—钨桥联以双位点协同机制高效催化析氧反应。它可有效抑制晶格氧参与,并可对重构过程中过渡金属刻蚀及反应过程中过氧化导致的铱位点氧化态升高进行电荷补偿,从而增强催化剂稳定性。此外,桥联氧作为质子受体可有效促进质子转移,解除在酸性电解质中质子浓度过高导致的关键中间体质子化脱除限制,进一步提升析氧反应活性。
    据悉,该研究实现了重构氧化铱基催化剂电化学性能与稳定性的双重提升,并可对酸性电解低成本高性能析氧催化剂的进一步设计提供借鉴。
  • 原文来源:https://www.chemall.com.cn/news/show-205571.html
相关报告
  • 《上海高研院质子交换膜电解水制氢研究取得重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-03-30
    • 发展氢能的“初心”是基于可再生能源的电解水绿色制氢,但高的贵金属催化剂用量是质子交换膜电解水制氢成本居高不下的主要原因之一。中国科学院上海高研院杨辉团队与美国凯斯西储大学戴黎明课题组合作在氢能源研究领域取得重要进展,发展了碳缺陷驱动的铂原子团 自发沉积新方法,实现了电解水制氢阴极Pt用量大幅降低,研究成果以“Carbon-Defect Driven Electroless Deposition of Pt Atomic Clusters for Highly Efficient Hydrogen Evolution”为题发表在J. Am. Chem. Soc., 2020, 142, 12, 5594-5601,论文的第一作者是上海高研院程庆庆博士,杨辉和戴黎明教授为通讯联系人。 图1. 超小Pt-AC/DG制备流程、物理表征、DFT计算、电化学HER活性以及质子交换膜水电解器件稳态极化曲线和稳定性测试 该工作中研究人员利用新颖的、碳缺陷驱动自发沉积新方法,构筑由缺陷石墨烯负载高分散、超小(< 1nm)且稳定的Pt原子级团簇(Pt-AC)水电解析氢(HER)电催化剂(图1)。理论研究表明:与完美六元环碳位点相比,缺陷碳位点具有更低的表面功函数、更高的还原能力,从而在缺陷位点处优先触发Pt离子自发沉积。碳缺陷与Pt之间更强的结合能力有效限制了自发还原Pt原子的迁移,确保超小Pt-AC的形成和稳定。上海光源同步辐射进一步验证了Pt-AC与碳缺陷之间较强的电子作用,赋予其有别于传统Pt纳米颗粒独特的电子结构。Pt-AC呈现了优异的HER电催化性能,与传统Pt/C催化剂相比,其质量比活性、Pt原子利用效率和稳定性均得到大幅提升。组装的质子交换膜水电解器件在实现安培级产氢电流的同时,阴极Pt用量降低到约1/10,且展现出优异的稳定性。本项目的进展将对氢能领域的发展和实现氢能经济具有重要的科学和实践意义。 本研究得到了国家重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项等资助。
  • 《南开大学联合团队在电催化水分解制氢研究中取得进展》

    • 来源专题:可再生能源
    • 编译者:武春亮
    • 发布时间:2024-08-06
    • 近日,从南开大学获悉,南开大学电子信息与光学工程学院罗景山教授团队联合西班牙巴斯克大学科研团队,在电催化水分解制氢研究中取得重要进展。 据了解,该联合团队利用金属载体相互作用构筑了碱性条件高活性析氢催化剂,能够在每平方厘米5安培的大电流密度下稳定运行超过1000小时,满足了 阴离子交换膜 电解水制氢 技术商业化应用的需求,相关研究成果在国际学术期刊《自然·通讯》发表。 氢能 作为一种低碳高效的清洁能源,在全球能源转型和应对气候变化方面扮演重要角色。以可再生能源电解水制氢为代表的绿氢在生产过程中不产生温室气体,被广泛视为实现碳中和目标的重要路径之一。 Ru NPs/TiN的合成示意图。(受访者供图) 目前,碱性电解水(ALK)和质子交换膜电解水(PEM)两种电解水制氢技术占比较高。其中,ALK制氢技术生产成本低、工业化成熟,但产生的氢气纯度不高且能量效率低。PEM制氢技术能量效率高,产生的氢气纯度较高,但成本较高。而阴离子交换膜(AEM)制氢技术被认为是集两者优势于一体的第三代电解水制氢技术,具有高效率、低成本、快速启停等优势,但在大电流密度下电解槽系统稳定性不足限制了其产业化应用。 罗景山介绍,开发大电流密度下寿命长、性能稳定的催化剂是AEM制氢技术亟待解决的核心问题之一。 “我们使用氮化钛负载的钌纳米颗粒催化剂组装了AEM电解槽,能在每平方厘米1安培、2安培和5安培的电流密度下稳定运行超过1000小时,性能几乎没有衰减。”论文第一作者、南开大学电子信息与光学工程学院2021级博士生赵佳说。 “在每平方厘米5安培的工业级电流密度下,我们的研究成果能够在AEM电解槽中高效稳定运行,克服了催化剂容易不稳定的问题,满足了AEM制氢大规模商业化应用的需求。”罗景山说,“未来,团队将继续投入到绿氢制备技术的自主研发之中,促进科技成果尽快转化落地,为构建零碳、低成本、安全可靠的绿氢能源供给体系贡献力量。”