《Nature | 揭开病毒对抗细菌CRISPR免疫系统的全新方式》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-10-20
  • 2023年10月18日,丹麦哥本哈根大学和新西兰奥塔哥大学的研究人员在国际顶尖学术期刊 Nature 上发表了题为Bacteriophages suppress CRISPR–Cas immunity using RNA-based anti-CRISPRs 的研究论文。该研究揭示了病毒(噬菌体)抑制细菌的CRISPR-Cas免疫系统的全新方法——基于小非编码RNA的抗CRISPR(small non-coding RNA anti-CRISPR,简称Racr),这也是基于RNA的抗CRISPR的第一个证据。

    研究团队表示,这一发现告诉我们,自然环境中的的微生物动力学,可用于提升基因编辑的安全性,并有望带来更有效的抗生素替代品。这一发现对科学界来说是令人兴奋的,它让我们对如何阻止细菌的CRISPR-Cas防御系统有了更深入的了解。

    该研究为噬菌体与细菌之间的“军备竞赛”提供了全新的见解,这一新发现有望开发出有效调控CRISPR-Cas系统的开关,以提高CRISPR-Cas系统的安全性,也有助于开发更有效的抗生素替代品。

    本文内容转载自“ 生物世界”微信公众号。

    原文链接: https://mp.weixin.qq.com/s/YaiX1-6Gbrtod4Pc7gmJ5w

  • 原文来源:https://www.nature.com/articles/s41586-023-06612-5
相关报告
  • 《Nature:揭示细菌中的泛素转移酶启动抗病毒免疫反应机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-22
    • 在一项新的研究中,来自美国科罗拉多大学博尔德分校的研究人员发现当涉及到抵御入侵者时,细菌的运作方式与人类细胞极为相似,它们拥有开启和关闭免疫途径所需的相同核心分子机制。他们还揭示了这种共享的古老分子机制---一群称为泛素转移酶(泛素转移酶)的酶---是如何运作的。他们说,更好地了解并有可能重新编程这种分子机制,最终可能为治疗一系列人类疾病(从类风湿性关节炎和克罗恩病等自身免疫性疾病到帕金森病等神经退行性疾病)的新方法铺平道路。相关研究结果于2023年2月8日在线发表在Nature期刊上,论文标题为“An E1–E2 fusion protein primes antiviral immune signalling in bacteria”。 论文共同通讯作者、科罗拉多大学博尔德分校生物化学系助理教授Aaron Whiteley说,“这项新的研究表明,我们与细菌没有什么不同。通过研究这些细菌过程,我们可以学到很多关于人体如何发挥作用的知识。” 下一个CRISPR? 这项新的研究并不是第一次展示细菌可以教给人类的东西。越来越多的证据表明人类免疫系统的一部分可能起源于细菌,而且在植物和动物王国中,进化产生了更复杂的细菌抗病毒工具。 2020年,美国加利福尼亚大学伯克利分校生物化学家Jennifer Doudna因CRISPR获得了诺贝尔奖,这是一种基因编辑工具。细菌利用CRISPR来对抗噬菌体。围绕CRISPR的讨论点燃了科学界对蛋白和酶在抗噬菌体免疫反应中所发挥的作用的新兴趣。 Whiteley说,“在过去的三到五年里,人们已意识到它不会随着CRISPR而结束。它的潜力是如此之大。” 进化史中的缺失环节 在这项新的研究中,Whiteley和论文共同第一作者Jane Coffin Childs与加州大学圣地亚哥分校的生物化学家合作,进一步了解一种名为cGAS(环状GMP-AMP合酶)的蛋白,人们以前已发现它既存在于人类中,也以一种更简单的形式存在于细菌中。 在细菌和人类中,当细胞感觉到病毒入侵时,cGAS对于启动下游防御至关重要。但是在细菌中是什么在调节这个过程,以前是不知道的。 Whiteley团队使用一种称为低温电镜的超高分辨率技术以及其他遗传和生物化学实验,近距离观察了cGAS在细菌中的进化前身的结构,并发现了细菌用来帮助cGAS保护细胞免受病毒攻击的额外蛋白。具体来说,他们发现细菌利用一种精简的泛素转移酶“一体化版本”来修饰它们的cGAS,其中泛素转移酶是一个复杂的酶集合,在人类中控制免疫信号转导和其他关键的细胞过程。 Ledvina说,由于细菌比人类细胞更容易进行基因操作和研究,这一发现为研究工作开辟了一个新的机会。“细菌中的泛素转移酶是我们了解这些蛋白进化史的一个缺失环节。” 对蛋白进行编辑 这项新的研究还揭示了这种分子机制是如何起作用的,确定了两种关键成分---称为Cap2(CD-NTase-associated protein 2)和Cap3(CD-NTase-associated protein 2)的蛋白---分别作为cGAS反应的开启开关和关闭开关。 Whiteley解释说,除了在免疫反应中发挥关键作用外,泛素在人类中还可以作为一种细胞垃圾的标记,引导多余或旧的蛋白被分解和破坏。当这个系统由于突变而失灵时,蛋白就会堆积起来,帕金森病等疾病就会发生。 这些作者强调,还需要进行更多的研究,但这一发现打开了令人兴奋的科学大门。就像科学家们将古老的细菌防御系统CRISPR改编成可以剪除DNA突变的剪刀式生物技术一样,Whiteley相信这种细菌泛素转移酶的一部分---Cap3,即“关闭开关”---最终可能经编程后对缺陷的蛋白进行编辑并治疗人类疾病。 Whiteley说,“我们对泛素转移酶及其进化过程了解得越多,科学界就越有能力在治疗上靶向这些蛋白。这项新的研究提供了非常明确的证据表明我们体内对维持细胞至关重要的分子机制起源于细菌,做着一些非常令人兴奋的事情。” 参考资料: Hannah E. Ledvina et al. An E1–E2 fusion protein primes antiviral immune signalling in bacteria. Nature, 2023, doi:10.1038/s41586-022-05647-4.
  • 《Nature子刊:解析细菌新型CRISPR抗病毒系统工作机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-11-10
    • III-E型CRISPR-Cas系统使用一个称为Cas7-11(也称为gRAMP)的单一多域效应器来切割RNA并与caspase样蛋白酶Csx29相结合,显示出RNA靶向应用的良好潜力。III-E型CRISPR-Cas系统的结构和分子机制尚不清楚。 2022年10月27日,发表在《Nature Microbiology》上的一项新研究中,天津医科大学张恒团队联合中国科学院武汉病毒所邓增钦团队通过解析Cas7-11复合物不同状态的冷冻电镜结构,利用大量生化实验阐明了Cas7-11加工前体CRISPR RNA(pre-crRNA),识别和切割target RNA的机制。研究还发现Cas7-11识别target RNA后,能够引起Csx29的构象变化,很可能激活其蛋白酶活性发挥免疫功能。 CRISPR-Cas系统是细菌和古菌抵抗可移动遗传原件入侵的适应性免疫系统,可以将其分为两类,第1类:由多个效应蛋白组成的蛋白复合物行使功能,包括 I,III和IV型;第2类由单个效应蛋白行使功能,包括II,V和VI型。最近研究人员鉴定了一种新型III-E亚型CRISPR-Cas系统。该系统在哺乳动物细胞进行RNA打靶时具有较高的活性及较低的毒性。 不同于之前发现的多亚基III型系统,它由4个Cas7和1个Cas11结构域融合形成一个大的效应蛋白Cas7-11/gRAMP,在crRNA指引下对靶标RNA进行切割。Cas7-11能与一种Caspase-like蛋白酶(Csx29/ TPR-CHAT)相互作用(ref 3),形成由CRISPR引导的Caspase复合物(Craspase),因此该系统可能同时兼具核酸酶与蛋白酶活性,暗示着一种新型抵抗噬菌体侵染的机制。 在这项最新研究中,作者首先借助冷冻电镜解析了Candidatus ‘Scalindua brodae’ 菌株的Cas7-11-crRNA(SbCas7-11-crRNA)二元复合物结构,发现Cas7-11由四个结构相似的Cas7以及一个Cas11和一个IPD结构域组成(图1)。IPD是一段位于Cas7.4中间的插入序列,目前对其结构与功能的研究尚不清楚。然而作者将IPD删除之后,并未影响target RNA的识别和切割,提示可以通过将IPD删除构建小型化的基因编辑工具。 在传统的III型CRISPR-Cas系统中,Cas6蛋白负责pre-crRNA加工成熟,而Cas7-11蛋白本身就具有相应的pre-crRNA加工能力。Cas7-11–crRNA结构显示成熟后的crRNA的重复序列结合在Cas7.1结构域,因此推测Cas7.1结构域可能具有加工pre-crRNA的能力。接下来作者设计了一系列突变实验来寻找Cas7.1的活性位点。由于单体SbCas7-11不稳定,作者选用来自Desulfonema ishimotonii物种的同源蛋白DiCas7-11进行实验。结果表明DiCas7-11的4个突变体(W20A、R26A、H43A和Y55A)都能够明显阻碍pre-crRNA的加工(图2),证明了Cas7.1结构域在pre-crRNA切割中的重要作用。其中W20和R26在Cas7-11同源物中严格保守,但H43被SbCas7-11中的苏氨酸残基(T45)取代,Y55被苯丙氨酸残基(F57)取代。 Cas7-11有两个target RNA切割位点,间隔6个核苷酸,称为位点1和位点2。Cas7-11-crRNA-target RNA三元复合物结构发现crRNA序列中的两个核苷酸,4A和10U,分别被Cas7.2和Cas7.3结构域的β-指结构翻转,提示target RNA切割很可能发生在这两个位点附近。在III-A/B系统中,Csm3/Cmr4亚基通过催化loop中的一个保守天冬氨酸残基发挥RNase活性。作者通过对比SbCas7-11和Csm复合物的结构,发现在Cas7.3中存在一个对应的保守的天冬氨酸残基(D698)。与预期的一样,D698A突变几乎消除了2位点的target RNA切割(图3左)。然而,在Cas7.2中的对应位置包含一个非保守的丝氨酸残基(S457),并且S457A突变对1位点的切割影响不大。 有趣的是,在同一催化口袋中的酸性残基D547的突变,几乎消除了SbCas7-11在1位点的切割活性(图3中)。更有趣的是,序列比对显示,在大多数Cas7-11同源物中,这两个相应位置上一般只会出现一个酸性氨基酸。例如,SbCas7-11有S457-D547,而DiCas7-11在对应的位置上是D429-N518。因此,作者提出了在这两个位置上的氨基酸可能存在功能冗余的假设,并做了功能丧失和功能获得突变来验证这一假设。与预期的一样,结果表明Cas7.2催化口袋的这两个活性位点酸性残基可能在功能上是等价的:两个位置的任何一个天冬氨酸残基都可以对target RNA进行切割(图3右)。 为了研究Cas7-11如何调控Csx29的机制,作者解析了Cas7-11-crRNA-Csx29三元复合物和Cas7-11-crRNA-target RNA-Csx29四元复合物的电镜结构。结构揭示Csx29在target RNA的存在下发生了明显的构象变化:TPR区域靠近Cas7-11,而蛋白酶PS结构域远离Cas7-11,使得Csx29的两个催化残基H585和C627在空间上更加靠近,暴露出其催化口袋(图4)。因此,target RNA的结合很可能可以激发Csx29蛋白酶活性,从而与Cas7-11协同抵抗外源核酸的入侵。该团队关于Csx29蛋白酶活性的测定及切割底物的鉴定等后续工作也证实了这一推断(该部分研究工作正在under revision)。 该研究阐述了Cas7-11加工成熟pre-crRNA和切割target RNA的机制,以及Cas7-11对Csx29活性的调控机制(图5)。该研究极大地促进了人们对于CRISPR系统的理解,并为Cas7-11作为安全高效靶向RNA编辑工具的工程化改造提供了结构基础。同时该系统所具有的RNA指导的蛋白酶活性可能为生命科学研究带来新的视角和新的工具。