《npj Vaccines:新型mRNA疫苗或能使出组合拳来帮助人类抵御疟疾的感染和流行》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-12-12
  • 全球有超过90个国家都存在疟疾的流行,每年疟疾会在全球引发2.41亿人感染,且会造成约62.7万人死亡,疫苗是一种能帮助消除致死性疾病的预防性措施,然而目前尚无针对疟疾的疫苗,而最近诸如在治疗SARS-CoV2的mRNAs疫苗上的疫苗开发的先进技术或有望帮助开发新一代的疟疾疫苗。

    近日,一篇发表在国际杂志npj Vaccines上题为“mRNA-LNP expressing PfCSP and Pfs25, two leading vaccine candidates targeting infection and transmission of Plasmodium falciparum”的研究报告中,来自乔治华盛顿大学等机构的科学家们通过研究开发出了两种mRNA候选疫苗,其或能高效降低疟疾的感染和传播,此外研究人员还发现,这两种实验性的疫苗能在机体诱导出强大的免疫反应,而无论其单独使用还是组合使用。

    研究者Nirbhay Kumar说道,消除疟疾并不可能在一夜之间发生,但这种疫苗或许有望将疟疾从全球很多地方“驱逐”出去,mRNA疫苗技术或许有望改变当前的疟疾防治规则,我们看到该技术在抵御COVID上是非常成功的,本文中,我们对这种技术进行了调整,旨在让其作为一种帮助有效抵御疟疾的工具。研究人员重点对恶性疟原虫进行了研究,其只引发疟疾的四种疟原虫中的一种,也是对人类最致命的疟原虫;恶性疟原虫和间日疟原虫主要是通过按蚊的叮咬来进行传播,其占到了全球所有疟疾病例的90%以上,而且占到了疟疾死亡病例的95%以上;大多数病例和死亡病例都发生于撒哈拉以南非洲地区,但世界上一半的人群都有感染这种致命性疾病的风险,为此,文章中,研究人员开发出了两种特殊的mRNA疫苗来干扰疟原虫生命周期的不同部分。

    研究人员利用靶向帮助疟原虫在机体内移动并入侵感染的蛋白的mRNA疫苗来免疫一组小鼠,随后他们利用能靶向帮助疟原虫在蚊子肠道内繁殖的蛋白的另一种疫苗来对另一组小鼠免疫,随后利用能引起感染的疟原虫来对免疫过的小鼠进行挑战,并对疫苗所诱导的抗体进行检测来确定其是否能干扰疟疾的传播。

    研究结果表明,这两种疫苗都能在小鼠机体中诱导出强大的免疫反应,而且能有效减少宿主和蚊子载体体内的疟原虫感染,在疟原虫传播到健康蚊子期间,保护性抗体的存在或能明显降低蚊子体内的疟原虫载量,这或许就是干扰疟疾传播的重要一步。研究者Kumar说道,这些疫苗或能高效预防疟原虫的感染,其有可能完全消除疟原虫的传播潜力,随后研究人员利用上述两种疫苗来免疫小鼠,结果发现,共免疫或能有效降低小鼠的感染和疟疾的传播,同时还不会影响小鼠机体的免疫反应。

    为了观察这些mRNA疫苗与其它基于核酸的疫苗平台之间的差异,研究人员利用DNA质粒重复了实验,结果发现,相比DNA疫苗而言,mRNA疫苗在诱导机体免疫反应方面要优越地多。后期研究人员希望能通过更多的研究(包括在非人类灵长类动物中进行相关的研究)来将这种新型疫苗推向市场,旨在产生能安全用于人类机体的疫苗。

    最后研究者表示,拥有一种能有效干扰疟原虫生命周期多个部分的疫苗混合制剂或许是开发疟疾疫苗的“圣杯”之一,这项研究或能帮助研究人员在开发能安全用于人类机体预防疟疾上又迈出了重要的一步,研究人员旨在开发出能帮助人类战胜疟疾挽救生命的潜在疫苗。

    原始出处:

    Nirbhay Kumar,Clifford Hayashi,Yi Cao1, et al. mRNA-LNP expressing PfCSP and Pfs25, two leading vaccine candidates targeting infection and transmission of Plasmodium falciparum, npj Vaccines (2022). DOI: 10.21203/rs.3.rs-1895368/v1

  • 原文来源:https://news.bioon.com/article/054de5088710.html
相关报告
  • 《Nature子刊解析!新型疫苗或能更好抵御疱疹病毒的感染》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-15
    • 近日,一篇发表在国际杂志Nature Vaccines上的研究报告中,来自美国内布拉斯加林肯大学等机构的科学家们通过研究开发出了一种新型遗传编辑形式的单纯疱疹病毒(HSV),其表现或优于一种目前领先的候选疫苗。研究者发现,利用修饰的活病毒疫苗来接种豚鼠或能显著增加其机体中抵御病毒抗体的产生,当接种较强毒力的HSV时,接种疫苗的动物表现出了较少的生殖器损伤、病毒复制和较少的病毒脱落现象,而这种病毒最早非常容易进行传染。 修饰后的病毒实际上是HSV1的一种新式,其最显著的特征是会引起口唇疱疹,实际上其表现出了一种抵御HSV2的交叉保护效应,而HSV-2特异性版本的疫苗被证实或许会更加有效;WHO估计全球有超过5亿人都携带有HSV-2,其会在机体中持续终生,而且经常会在机体处于压力下时发生爆发;除了会引起水泡外,HSV-2还会增加个体感染HIV的风险,并可能会导致阿尔兹海默病和其它形式的痴呆症。 研究人员花费了很多年时间来研究如何预防HSV到达神经系统的安全地带,当分析一种特定的α疱疹病毒蛋白pUL37的架构特征时,他们推测,这种蛋白对于病毒沿着神经纤维移动非常重要,基于对该架构的计算机分析结果显示,pUL37蛋白的三个区域或许对于上述过程很重要;随后研究人员从每个区域的病毒基因组中移除并替换了5个密码子,他们希望这些突变能帮助阻断病毒入侵神经系统。当研究人员给予小鼠注射pUL37蛋白区域2被修饰(R2)的突变病毒时,他们发现,病毒并没有侵入神经系统,而只是停留在了神经末梢,而研究者也知道,修饰HSV或许会产生意想不到的结果。 进一步研究后,研究者发现,R2突变的病毒作为疫苗在小鼠机体中表现良好,研究者Pickard说道,目前我们正在设计计划进行R2疫苗的设计,目前我们正在针对牲畜(特别是牛和猪)开发针对性的疫苗,从而来对抗其自身的α疱疹病毒感染。在牛群中,牛疱疹病毒会引发呼吸系统疾病,抑制食欲甚至导致母牛流产,这会造成每年数十亿的美元损失;虽然确实存在一种针对牛的改良活病毒疫苗,但其仍然会进入牛机体的神经系统,并引起疾病。 这项研究中,研究人员所开发的R2修饰病毒并不会进入宿主神经系统,实际上其对于牛养殖业具有非常重要的应用意义;目前研究人员正在着手开展进一步的研究,他们希望能在展现出R2疫苗相比目前全行业其它疫苗的优越性的同时,还能继续获得投资进行更为深入的研究。
  • 《Cell Rep Med解读!新型疫苗策略或能利用T细胞来为机体提供抵御流感病毒感染的保护力》

    • 来源专题:中国科学院病毒学领域知识资源中心
    • 编译者:malili
    • 发布时间:2020-09-28
    • 近日,一项刊登在国际杂志Cell Reports Medicine上题为“MedicineProgramming Multifaceted Pulmonary T Cell Immunity by Combination Adjuvants”的研究报告中,来自威斯康星大学麦迪逊分校等机构的科学家们通过研究开发了一种新型疫苗策略,其能通过利用T细胞来为机体提供抵御流感的免疫保护。 当美国科学家们开始着手研究每年的流感疫苗时,本文的研究人员则开始开发一种替代性的疫苗策略,这种新型疫苗或有望帮助人们有效抵御季节性流感的感染。文章中,研究人员描述了一种基于T细胞的疫苗策略或能有效抵御多种流感病毒的感染,这种通过鼻腔注射的实验性疫苗能通过聚集T细胞来为小鼠肺部提供持久全方位的保护效应;研究者Marulasiddappa Suresh解释道,本文研究提出了一种开发通用型流感疫苗的潜在策略,相关研究结果或能帮助理解如何在机体呼吸道中诱导并维持T细胞免疫力,研究者认为,相同的方法或能被用来应用于研究其它呼吸道病原体,包括引发COVID-19的SARS-CoV-2等。 目前市场上并没有能够进入呼吸道粘膜并通过刺激T细胞免疫力来发挥作用的人类疫苗,这种新型疫苗策略解决了目前流感疫苗开发的致命弱点,即通过利用T细胞抵御多种毒株的免疫力,来实现每年对不同流行的流感病毒的特异性抗体反应;尤其是这种新方法能利用在组织中(气管和肺部上皮细胞)驻留的T细胞(TRM cells)来对抗外来入侵的病原体,就好像精锐士兵一样,TRM细胞能作为抵御感染的前线士兵。研究者表示,此前我们并不知道如何利用安全的蛋白疫苗来诱导组织驻留的记忆细胞,如今我们有了一种新型策略,即能在肺部中刺激这些细胞来产生保护机体抵御流感病毒的入侵。一旦细胞被感染,这些记忆细胞就会杀灭被感染的细胞,从而在感染进一步进展之前有效阻断感染。 流感疫苗能通过增强机体免疫系统的功能来识别并抵御流感病毒从而发挥作用,疫苗会引入流感病毒表面的特殊蛋白,促进免疫系统产生抗体,在病毒攻击机体时及时作出反应;然而,由于必须在流感季节前预测病毒毒株从而开发疫苗,因此任何一年的疫苗或许都不能完全匹配该季节所流行的病毒毒株,而且流感病毒经常会发生突变,且会在不同时间和地区之间存在一定差异,而且疫苗的保护既不持久也不普遍。研究者Suresh指出,尽管当前人们所接种的疫苗能刺激机体产生抗体反应,但这些抗体并不能进行交叉保护,如果有一种新型流感病毒毒株没有在当年疫苗中出现的话,机体去年产生的抗体或许就无法提供保护,这时候就会发生大流行,因为有一种全新的病毒毒株出现,而机体也并没有有效抵御这种毒株的抗体。 研究人员所开发的新型疫苗能针对流感病毒中的一种内部蛋白质—核蛋白,这种蛋白在不同流感病毒毒株之间是保守的,这意味着其遗传序列在不同流感病毒毒株之间是相似的。这种新型疫苗还能利用一种特殊的佐剂组合来增强机体的免疫反应,研究者所使用的佐剂能刺激肺部中的保护性T细胞形成不同的亚型,即在实验室流感疫苗的条件下形成记忆辅助T细胞和杀伤性T细胞,这样新型疫苗就会利用多种免疫模式来发挥作用。杀伤性T细胞能追捕并杀灭被流感病毒感染的细胞,而辅助T细胞则能帮助杀伤性T细胞发挥作用,并能产生特殊分子来促进机体对流感病毒的控制,在实验室研究中,研究者发现,上述两种T细胞均能保护机体抵御流感。 通过对小鼠模型进行研究,研究者发现,这种新型疫苗能为小鼠提供持久的免疫力(接种后至少400天),同时还能抵御多种流感病毒,下一步研究者将会在雪貂和非人类灵长类动物中测试该疫苗,这两种进行流感研究的动物模型在生物学上与人类感染和传播模式更为相似。这种疫苗的佐剂作何能使其适应其它更多的病原体,这或许就扩大了疫苗研究的工具箱,目前研究者设计了多种该方法来编程靶向作用多种呼吸道病毒的免疫力,同时研究者也在检测能抵御结核病和人类呼吸道合胞病毒的相同疫苗策略。 研究者认为,同样的疫苗技术还能用于抵御SARS-CoV-2,基于COVID-19的免疫学信息,目前研究者知道这种新型的疫苗策略或许也能产生一定的治疗效用。目前研究者正在开发一种针对COVID-19的实验性疫苗策略,同时他们还进行了实验室测试来测定其在小鼠和仓鼠机体中的有效性,在小鼠机体中进行的研究结果表明,这种新型疫苗策略能刺激肺部产生抵御COVID-19的强大T细胞免疫力。 本文中,研究人员所开发的疫苗是一种蛋白质疫苗(并非活疫苗),其能安全用于那些怀孕或免疫力低下的人群中,研究者Suresh表示,近年来,疫苗研发工作已经从活疫苗转向到了蛋白质疫苗研究上,因为越来越多的人群会因化疗、放疗或HIV感染等疾病而产生免疫系统受损的表现。此前研究人员并不知道如何在没有活病毒的情况下诱导肺部产生T细胞免疫力;如今他们通过巧妙使用所开发的联合佐剂就能诱导T细胞免疫力并在肺部中产生很长的保护时间。