《广州健康院在猪体内再造出了人体中期肾脏》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-09-08
  •  器官移植已成为多种终末期疾病的唯一有效治疗手段,供体器官严重缺乏却限制了这一疗法在临床上广泛应用。据不完全统计,我国每年开展器官移植手术的患者2万多例,而因终末期器官功能衰竭等待移植的患者高达30万,供需缺口巨大。基于干细胞的器官异种动物体内再生将是未来解决这一问题的理想途径。通过该途径获得的人源化器官不仅将具有更全面的细胞类型和更完善的器官结构与功能,而且由于供体细胞来源于患者自体,将有效避免异种器官或同种异体器官移植中存在的免疫排斥等问题。

      9月7日,中国科学院广州生物医药与健康研究院在国际权威学术期刊Cell Stem Cell(《细胞干细胞》)发表封面研究论文,报道了利用胚胎补偿技术在猪体内成功再造人源中肾的策略。

      在研究中,研究人员利用具有高分化潜能、强竞争及抗凋亡能力的新型人诱导多能干细胞,结合优化的胚胎补偿技术体系,在肾脏缺陷猪模型体内实现了人源化中肾的异种体内再生,这是世界范围内首次报道的人源化器官异种体内再生案例。

      基于胚胎补偿技术实现人源化器官异种体内再生存在诸多障碍,包括人源多能干细胞的分化能力不足,在异种动物胚胎内的生存能力低下、大动物模型提供的器官缺陷生态位难以形成、异种胚胎嵌合补偿技术体系不完善等,导致从猪体内培育人体器官的设想一直没有成功。

      为了寻求突破点,中国科学院广州生物医药与健康研究院赖良学课题组、潘光锦课题组以及Miguel A. Esteban课题组组成联合攻关团队,在中国科学院“器官重建与制造”战略性先导科技专项的支持下,围绕人体肾脏的异种再生这一世界难题开展了5年多的探索。

      攻关团队对人-猪胚胎补偿技术体系进行了全方位的优化,最终确定了理想的胚胎补偿技术流程,即在桑葚到早期囊胚时期注射3-5个人源供体细胞,以构建嵌合胚胎,后者在等比例混合的胚胎培养基和干细胞培养基中培养24小时后,移植入发情周期同步的代孕猪,即可获得嵌合猪胎儿,最终成功实现了人源化中肾的异种体内再生。

      该研究严格遵守相关伦理规定以及国际惯例,在3-4周胎龄内终止了妊娠。共获得2只胎龄25天,3只胎龄28天的中肾嵌合胎儿。这些嵌合胎儿的中肾内人源细胞占比最高可达70%,而人源细胞参与形成的中肾小管所占比例最高可达58%。针对肾脏发育关键功能性基因SIX1,SALL1,PAX2及WT1的免疫荧光染色结果证明,人源供体细胞已分化成为表达这些基因的功能性细胞,说明伴随着胚胎发育,肾脏缺陷猪胎儿体内的人源供体细胞将能够支持人源化肾脏生成。

      这项成果首次证明了基于干细胞及胚胎补偿技术在异种大动物体内再造人源化实质器官的可行性,为利用器官缺陷大动物模型进行器官异种体内再生迈出了关键的一步,对解决供体器官严重短缺难题具有重要意义。

      中国科学院广州生物医药与健康研究院博士后王教伟、谢文广,副研究员栗楠、李文娟以及博士研究生张智帅为该论文的共同第一作者。中国科学院广州生物医药与健康研究院赖良学研究员、戴祯研究员、Miguel A. Esteban研究员以及潘光锦研究员为本论文的共同通讯作者。项目受到中国科学院战略性先导科技专项、国家重点研发计划等基金的资助。

  • 原文来源:http://www.gibh.cas.cn/xwdt/kydt/202309/t20230908_6875382.html;https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(23)00286-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1934590923002862%3Fshowall%3Dtrue
相关报告
  • 《广州健康院在猪体内再造出人体中期肾脏》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-09-12
    •     2023年9月7日,中国科学院广州生物医药与健康研究院在《细胞-干细胞》(Cell Stem Cell)上以“Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation”为题发表了封面研究论文,报道了利用胚胎补偿技术在猪体内成功再造人源中肾的策略。该研究利用具有高分化潜能、强竞争及抗凋亡能力的新型人诱导多能干细胞,结合优化的胚胎补偿技术体系,在肾脏缺陷猪模型体内实现了人源化中肾的异种体内再生,这是迄今世界范围内首次报道的人源化器官异种体内再生案例。     该研究严格遵守相关伦理规定以及国际惯例,在3-4周胎龄内终止了妊娠。研究共获得2只胎龄25天,3只胎龄28天的中肾嵌合胎儿。这些嵌合胎儿的中肾内人源细胞占比最高可达70%,而人源细胞参与形成的中肾小管所占比例最高可达58%。针对肾脏发育关键功能性基因SIX1、SALL1、PAX2及WT1的免疫荧光染色结果证明,人源供体细胞已分化成为表达这些基因的功能性细胞,说明伴随着胚胎发育,肾脏缺陷猪胎儿体内的人源供体细胞将能够支持人源化肾脏生成。这一成果首次证明了基于干细胞及胚胎补偿技术在异种大动物体内再造人源化实质器官的可行性,为利用器官缺陷大动物模型进行器官异种体内再生迈出了关键一步,对解决供体器官严重短缺难题具有重要意义。 编译来源:https://www.cas.cn/syky/202309/t20230909_4969900.shtml
  • 《广州健康院利用人肝类器官发现线粒体疾病的铁死亡全新病理》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-03-09
    • 近日,中国科学院广州生物医药与健康研究院刘兴国课题构建了线粒体DNA缺失综合症(MDS,Mitochondrial DNA depletion syndrome)病人特异性的及其CRISPR/Cas9修复的诱导多能干细胞,进而分化高纯度3D肝类器官和2D肝样细胞作为肝脏疾病的联合模型。该研究发现MDS病人肝细胞对铁沉积导致的铁死亡(一种细胞的死亡方式)更为敏感,阐明线粒体溶酶体互作引发铁死亡的病理,并筛选出N-乙酰半胱氨酸(NAC)作为潜在的候选药物。这项研究揭示了线粒体疾病的全新死亡模式、细胞器互作机制和潜在治疗策略,相关成果于3月8日以A combined model of human iPSC-derived liver organoids and hepatocytes reveals ferroptosis in DGUOK mutant mtDNA depletion syndrome发表在Advanced Science(《先进科学》)上。   线粒体是真核生物细胞中最重要的细胞器之一,除了为细胞提供能量外,它还参与调控细胞代谢、氧化应激、细胞死亡等多种生理活动,在细胞生、老、病、死等各方面发挥重要作用。线粒体DNA缺失综合症是由于维持线粒体DNA合成的核基因突变,线粒体DNA含量严重减少,导致多组织器官功能障碍的重大疾病,受累器官通常有肝脏、脑、肌肉等。病理表型具有组织特异性,目前已发现至少9种基因突变会导致MDS。刘兴国课题组在前期工作中报道了丙戊酸诱发Alpers-Huttenlocher综合征(由POLG突变导致的MDS)肝毒性的机理,并建立了相应的候选药物筛选策略,是首次利用诱导多能干细胞(iPSC)技术建立遗传特异的肝细胞毒理学模型,成为解决临床问题的成功范例(Xingguo Liu*, Hepatology, 2015)。此后,在线粒体疾病方向,刘兴国团队进行了持续深入的研究。   DGUOK是脱氧鸟苷激酶,是线粒体内合成嘌呤核苷酸重要的酶,该基因突变是导致肝脑型MDS最常见的遗传背景因素。患者大多出生后1个月内发病,预后极差,通常一年内死于严重肝衰竭,除了肝移植,没有其他有效的治疗方法。肝脏铁沉积是其重要临床表型,血清学检查也显示血清铁蛋白和转铁蛋白升高。肝脏作为人体内主要的铁贮器官,铁过载时肝脏首当其冲成为铁毒性攻击的主要部位。然而铁在这个疾病中起何种作用?相关研究至今一片空白! DGUOK突变的MDS病人进展如此迅速且严重的肝衰竭病理机制至今尚未解释清楚,更无有效的针对性治疗药物,亟需深入研究,探寻有效治疗手段。   团队为了攻克这一医学难题,将病人皮肤成纤维细胞重编程为iPSC,进行CRISPR/Cas9基因修复,保证了遗传背景的一致性。接着,团队利用高纯度3D肝类器官分化培养技术排除胆管细胞干扰,并结合2D肝样细胞分化技术,建立了一个更为强大可靠的体外肝脏疾病模型。   团队发现病人肝细胞线粒体DNA缺失导致线粒体功能障碍、ATP合成减少、和活性氧(ROS)大增。病人3D肝类器官和2D肝样细胞均对铁沉积导致的铁死亡更敏感。这一铁死亡是线粒体与溶酶体的细胞器互作事件:首先线粒体活性氧激增及谷胱甘肽耗竭,继而核受体共激活因子4(NCOA4)介导铁蛋白在溶酶体中降解,铁蛋白里的铁释放到胞质中,引起脂质过氧化增加,最终导致肝细胞铁死亡。进一步的工作筛选出谷胱甘肽的前体—N-乙酰半胱氨酸(NAC)可以显著抑制病人肝细胞铁死亡。   该研究首次将高纯度3D肝类器官技术应用于遗传性肝病研究,论证了MDS疾病发生铁死亡这一全新病理,揭示了其临床肝脏铁过载的奥秘,并筛选出有效的抑制铁死亡候选药物。更重要的是,不限于MDS,线粒体DNA缺失广泛存在于衰老、退行性疾病和其他遗传性疾病中,所以该发现具有广泛的潜在病理和治疗意义。   本研究与山东大学合作完成,获国家重点研发项目、中国科学院、国家自然科学基金、广东省和广州市的经费支持。