《俄罗斯科学家发现了将食物垃圾转化为生物燃料的方法》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2017-11-30
  • 2017年11月19日

    在俄罗斯,来自Skoltech和俄罗斯科学院高温联合研究所的科学家们提出了一种新的方法,通过热液液化来将食物垃圾转化为生物燃料——一种将湿生物转化为石油的热解聚过程。其他研究人员使用碳水化合物发酵或脂肪转化为生物燃料生产,但由于他们的生物燃料中只有一部分被转化为燃料,剩下的部分仍待处理,并不能解决食品浪费问题。

    为了解决食品浪费问题,Skoltech的科学家认为,水热液化是一种独特的节能和普遍的选择。特别地,这种方法使生物燃料可以直接从湿生物质中产生。值得注意的是,在干燥过程中,最好是把湿的生物量转换成干燥过程,因为干燥过程消耗了相当多的能量。他们尝试了各种各样的食物垃圾,包括帕尔马干酪、火腿和苹果。由于水热液化所产生的产物分子组成的知识,将使科学家能够开发出最优的方法,以便他们随后的加工制造出适合汽车的燃料。

相关报告
  • 《中日科学家合作研究发现了影响木质素合成的关键酶》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 乙醇,俗称酒精,是一种清洁、可再生的生物燃料。传统的酒精生产是通过甘蔗中的蔗糖或玉米淀粉中的葡萄糖发酵而成。近年来,随着人们对生物燃料需求量的不断增加,甘蔗叶、玉米秸秆、稻草等植物中非食用部分的纤维素被用来作为生物乙醇生产的原材料。然而,由于纤维素与植物细胞壁中的木质素有交联作用,很难从纤维素中分解出葡萄糖。木质素是一种复杂的高聚物,使植物具备强抗折性和结构完整性。然而,为了在生物乙醇生产中更高效地利用纤维素,需要昂贵、复杂的步骤来减少木质素带来的障碍。 水稻及其它谷类属于禾本科,这些植物茎叶上的木质素包含一种名为麦黄酮的特殊成分。香港大学(University of Hong Kong)植物生化学家卢思聪(Clive Lo Sze-chung)博士及其学生林佩莹(Lydia Lam Pui-ying)博士,与日本东京大学的木质素专家飞松裕基(Yuki Tobimatsu)博士合作研究发现,敲除麦黄酮化合物中的一个关键酶——黄酮合酶Ⅱ(FNSII)后,就不会再生成麦黄酮,而且稻草中的木质素也减少了约三分之一。此外,在没有任何化学方法的干预下,纤维素降解所产生的葡萄糖也增加了37%。这一研究突破近日发表在著名的植物科学期刊《植物生理学报》(Plant Physiology)。 卢思聪博士指出:“这是首次通过干扰麦黄酮合成来减少稻草细胞壁中的木质素含量,更重要的是,没有对水稻生长和产量造成负面影响。”由于禾本科植物的木质素都含有麦黄酮,这一策略可以用于玉米、小麦、大麦等谷物,以及高梁、柳枝稷这些在世界各地广泛种植且专为乙醇生产的禾本科植物,以便更有效地将这些植物用作生产生物燃料的原材料。纤维素降解产生的葡萄糖可以用来生产生物乙醇。换句话说,木质素处理成本降低,乙醇产量增加,因此用这种稻草来生产乙醇更加有效。 林佩莹博士最近获得了日本学术振兴会(Japan Society for the Promotion of Science, JSPS)外国人特别研究员资格,将于今年九月份在东京大学开始其博士后研究。她表示:“我非常荣幸能够从事一项裨益社会的研究项目。作为一名香港人,一直以来我受到的教育就是要快速、高效地工作。在东京大学的八个月研究期间,东大学生极端谨慎、精准做实验的态度给我留下了非常深刻的印象。我今天做研究时,也时常告诫自己,除了速度和效率,还要力求完美。” (编译 李楠)
  • 《研究人员进一步找到将藻类转化为生物燃料的关键》

    • 来源专题:可再生能源
    • 编译者:chenss
    • 发布时间:2016-03-26
    • 佛罗里达大学食品与农业科学研究所的研究人员可能已发现将藻类转化为燃料的关键。 科学家发现了研究人员所谓的“转录因子”,名为ROC40。佛罗里达大学食品与农业科学研究所园艺学教授Bala Rathinasabapathi,把一个转录因子控制细胞内许多基因的作用比作一个警察控制一大群人。为了抽取藻类的油脂,科学家必须控制向藻类供氮。通过氮饥饿调节数百种蛋白质,使ROC40合成最多以诱导细胞达到产油最大值。这种高诱导蛋白启示科学家其可以发挥重要的生物学作用,前佛罗里达大学食品与农业科学研究所植物分子与细胞生物学博士生Elton Gonçalves说。事实上,该小组的研究表明,ROC40在藻细胞缺乏氮时可帮助控制油脂生产。 “我们对ROC40蛋白的发现表明它可能会增加参与微藻油的合成基因的表达,“Rathinasabapathi说。“这些信息用于生产生物燃料的藻类优势菌的发展是非常重要的,”Gonçalves说。“我们进行这项研究,是由于发展可再生能源作为未来几代石油基燃料的替代品的巨大的社会经济重要性。为了推进藻类生物燃料的大规模生产,竞争方案,很好地了解这些生物中的生物过程是基本的。” Rathinasabapathi说这个信息对于未来工程藻类在不控氮下过量产油具有价值。 微藻油脂为生物燃料提供了一个极好的可再生来源。藻类生长很快,可忍受极端的气候条件,不构成生物燃料作物那样的同时作为燃料和食物的问题。 难题是如果藻类被剥夺了氮,这些细胞会变得紧张,开始产生脂肪,但它们的生长速度减慢。如果藻类将成为一种商业上可行的燃料来源,科学家们必须确保它不仅能生产尽可能多的油,同时还可以尽可能快地生长。 Rathinasabapathi与Gonçalves合作这项研究,并已在植物学报(The Plant Journal)出版。其他合作者为:Sixue Chen,生物技术研究的跨学科中心的一部分——超滤膜蛋白质组学与质谱联用技术的副教授;Jodie Johnson,超滤膜的质谱设备助理研究员,以及Takuya Matsuo,日本名古屋大学助理教授。