基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的11月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。 1. CRISPR基因组编辑有望用于整形外科中 doi:10.1097/PRS.0000000000004863 CRISPR基因组编辑技术有望导致基因工程和治疗发生“变革性飞跃”,它几乎影响到医学的每个领域。根据2018年11月发表在美国整形外科学会(American Society of Plastic Surgeon)官方期刊Plastic and Reconstructive Surgery上的一篇标题为“CRISPR Craft: DNA Editing the Reconstructive Ladder”的论文,所涉及的医学领域包括整形手术,这种基因组编辑技术有望在从预防颅面畸形到治疗性皮肤移植再到新型无排斥移植等方面取得潜在的进展。美国整形外科学会会员、麻省总医院外科医生Eric Chien-Wei Liao博士说,“CRISPR对治疗人类疾病的潜在影响包括对整形外科医生比较重要的几个领域,比如肿瘤学、伤口愈合、免疫学和颅面畸形。”在这篇关于再生医学的特稿论文中,Liao博士等人回顾了CRISPR基因组编辑的历史和机制,强调了它在整形手术(plastic surgery)和重建手术(reconstructive surgery)中的潜在用途和影响。2.Nature子刊:利用 纳米 磁铁对体内CRISPR/Cas9基因组编辑进行空间控制 doi:10.1038/s41551-018-0318-7 在一项新的研究中,美国莱斯大学生物工程师Gang Bao及其团队将磁性纳米颗粒与一种从苜蓿环纹夜蛾(Autographa californica, 一种原产于北美洲的蛾类物种)体内获得的病毒相结合开发出一种运送载体来运送CRISPR/Cas9,从而通过空间控制对特定组织或器官中的基因进行修饰。相关研究结果于2018年11月12日在线发表在Nature Biomedical Engineering期刊上,论文标题为“Spatial control of in vivo CRISPR–Cas9 genome editing via nanomagnets”。 源自这种病毒的圆柱形杆状病毒载体(baculovirus vector, BV)被认为足够大,它的直径高达60nm,长度高达200~300纳米。这种大小足够运送长38000多个碱基对的DNA。 这些研究人员仅在需要时利用磁性纳米颗粒激活这种杆状病毒载体并运送用于基因编辑的有效载荷。为了做到这一点,他们使用了一种名为C3的免疫系统蛋白,其中,在正常情形下,蛋白C3让杆状病毒灭活。施加磁场允许杆状病毒载体转导,即一种将有效载荷引入到靶细胞中的过程。这种有效载荷也是DNA,它编码一种报告基因和CRISPR/Cas9系统。在测试中,杆状病毒载体携带着绿色荧光蛋白或萤火虫荧光素酶。具有这种蛋白的细胞在显微镜下明亮地发光,并且实验表明在细胞培养物和实验室动物中,利用磁铁高效地靶向运送携带着有效载荷的杆状病毒载体。 3. Cell:开发出SLICE工具,鉴定出人T细胞免疫功能的关键调节基因 doi:10.1016/j.cell.2018.10.024 在一项新的研究中,来自美国加州大学旧金山分校的研究人员设计出一种基于CRISPR的称为SLICE(single guide RNA lentiviral infection with Cas9 protein electroporation, 即利用Cas9蛋白电穿孔进行单向导RNA慢病毒感染)的系统,这种系统将使得科学家们能够快速评估直接从患者体内提取出的“原代”免疫细胞中每个基因的功能。这种新方法为科学家们提供了一个强大的工具,能够在确定如何最好地改造免疫细胞来对抗癌症和一系列其他疾病时指导他们作出决策。相关研究结果于2018年11月15日在线发表在Cell期刊上,论文标题为“Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function”。论文通讯作者为加州大学旧金山分校微生物学与免疫学副教授Alexander Marson博士。论文第一作者为加州大学旧金山分校的Eric Shifrut 和Julia Carnevale。图片来自Cell, doi:10.1016/j.cell.2018.10.024。作为一种概念验证,这些研究人员测试了他们是否能够利用SLICE鉴定出让T细胞---一种常见的免疫细胞类型---更有效地增殖的基因。这对于癌症免疫疗法尤为重要,这是因为癌症免疫疗法利用人工刺激的经过基因改造的T细胞来杀死癌症。到目前为止,这些疗法仅对某些恶性肿瘤有效,不过科学家们认为,鉴定出促进T细胞增殖的基因能够让癌症免疫疗法适用于更多的患者。 利用SLICE,这些研究人员能够鉴定出促进T细胞增殖的基因,以及抑制这种增殖的基因。虽然其中的一些基因之前已利用其他的发现方法进行了描述,但是许多基因都是全新的,这表明SLICE能够揭示其他方法未能捕获的关键性的增殖调节因子。 在鉴定出这些基因后,这些研究人员从多个人类供者中获得原代T细胞,并剔除了经发现抑制T细胞增殖的基因。当这些经过CRISPR修饰的T细胞在癌症存在下进行培养时,它们显示出显著改善的癌症杀伤能力,这表明科学家们能够对利用SLICE鉴定出的基因进行编辑,从而将普通的T细胞转化为一种潜在的强效疗法。 4.Nature:精确编辑基因有戏!利用机器学习算法准确地预测细胞如何修复CRISPR诱发的DNA断裂 doi:10.1038/s41586-018-0686-x 当双螺旋DNA因损伤(比如X射线暴露)发生断裂时,细胞中的分子机器会开展基因“自动校正(auto-correction)”,从而将基因组重新连接在一起,但是这种修复通常是不完美的。细胞中的天然DNA修复过程能够以一种看似随机且不可预测的方式在断裂位点处添加或移除DNA片段。利用CRISPR-Cas9编辑基因能够在特定位点上让DNA发生断裂,但是这可能会产生“拼写错误(spelling error)”,从而改变基因的功能。这种对CRISPR诱导的损伤作出的反应称为“末端连接(end joining)”,对让基因失去功能是非常有用的,但是科学家们认为它太容易出错而不能够用于治疗目的。 不过一项新的研究推翻了这个观点。通过构建出一种预测人类细胞和小鼠细胞如何对CRISPR诱导的DNA断裂作出反应的机器学习算法,来自美国麻省理工学院、麻省总医院、哈佛大学、布莱根妇女医院和布罗德研究所的研究人员发现细胞经常以精确和可预测的方式修复断裂的基因,有时甚至让突变基因返回到它们的健康版本。此外,他们将这种预测能力用于测试,并成功地校正了从患有两种罕见遗传疾病之一的患者体内获取的细胞中的基因突变。这项研究表明细胞的基因自我校正能力有朝一日可能与基于CRISPR的疗法联合使用,通过精确地切割DNA和允许细胞天然地修复损伤来校正基因突变。相关研究结果于2018年11月7日在线发表在Nature期刊上,论文标题为“Predictable and precise template-free CRISPR editing of pathogenic variants”。论文通信作者为布罗德研究所副所长David Liu教授、麻省理工学院计算机科学与生物工程教授David Gifford和布莱根妇女医院医学助理教授Richard Sherwood。 在这项新的研究中,这些研究人员开发出一种策略来观察细胞如何修复小鼠和人类基因组中CRISPR靶向切割的2000个位点。在观察到细胞如何修复这些切割之后,他们将所获得的数据输入到一种称为inDelphi的机器学习模型中,从而促进这种算法学习细胞如何对每个位点上的切割作出反应,也就是细胞将哪些DNA片段添加到每个受损基因上,或者从每个受损基因中移除哪些DNA片段。 他们发现inDelphi能够识别出切割位点上的模式,这些模式可预测在经过校正的基因中发生了哪些DNA片段插入和缺失。在很多位点上,经过校正的基因并不包含大量的变异,而是一种单一的结果,如校正致病性的基因。 事实上,在利用inDelphi查询通过切割恰当的位点能够校正的疾病相关基因后,这些研究人员发现了将近200种致病性的基因变异体,这些变异体在通过CRISPR相关酶切割后大部分被校正为正常的健康形式。他们也能够校正来自患有两种罕见遗传疾病---赫曼斯基-普德拉克综合征(Hermansky-Pudlak syndrome)和门克斯病(Menkes disease)---的患者的细胞中的基因突变。 5. Circ Res:重大进展!利用CRISPR/Cas9基因组编辑有望阻止心源性猝死 doi:10.1161/CIRCRESAHA.118.313369 在一项新的研究中,美国贝勒医学院的Xander Wehrens博士及其同事们研究了心脏病,包括遗传性心律失常。除了经常与心源性猝死的高发病率相关之外,这些疾病是很难治疗的。相关研究结果近期发表在Circulation Research期刊上,论文标题为“In Vivo Ryr 2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia”。图片来自Circulation Research, doi:10.1161/CIRCRESAHA.118.313369。 Wehrens说,“对这项特殊的研究而言,我们的灵感来自一名患上一种称为儿茶酚胺性多形性室性心动过速(catecholaminergic polymorphic ventricular tachycardia, CPVT)的遗传性心律失常的年轻患者。我们的这名患者有反复发作的心律失常---心跳过快或不规则---以及昏厥发作。这名患者的几名家庭成员已将近出现致命性的心律失常或心源性猝死。当前的治疗选择包括抗心律失常药物和植入式除颤器---一种校正某些不规则心跳的装置---对这名患者来说并不是最佳选择。” 遗传学研究已表明年轻患者心律失常的原因是基因RYR2发生突变。这种基因发生的突变占将近60%的CPVT病例。这种基因编码的蛋白形成一种调节心肌细胞中钙离子流动的通道。心肌细胞需要适当的钙离子流动,从而能够以一种协调的方式进行收缩和舒张。 Wehrens和Lagor设计了AAV载体,将CRISPR/Cas9(AAV-CRISPR)运送到活体动物的心脏中。他们推断清除RYR2基因的致病性拷贝(携带着R176Q突变),能够校正小鼠所患的这种致命性的心律失常。为了测试这种新方法,AAV-CRISPR被用来选择性地破坏R176Q CPVT小鼠模型中的RYR2突变基因。在出生10天后,携带R176Q突变的小鼠和正常小鼠接受单次注射AAV-CRISPR或安慰剂治疗。五到六周后,这些研究人员对这些小鼠进行了评估,结果非常令人鼓舞。携带致病性R176Q突变且接受AAV-CRISPR治疗的小鼠均未发生心律失常。相比之下,71%的携带着这种突变且接受安慰剂治疗的小鼠确实发生了心律失常。利用AAV-CRISPR对RYR2基因的缺陷性拷贝进行编辑会极大地降低存在功能障碍的RYR2蛋白的丰度。此外,仍然存在的RYR2基因的单个健康拷贝足以支持适当的心脏功能。在正常或携带这种突变的小鼠组中未观察到与治疗相关的不良事件。 6.Nat Med:人类机体真的对CRISPR-Cas9基因编辑工具存在免疫力吗? doi:10.1038/s41591-018-0204-6 如今CRISPR-Cas9基因编辑系统在基因治疗领域产生了激动人心的成果,这就激发了科学家们利用该工具治疗人类遗传性疾病的新希望,近日,一项刊登在国际杂志Nature Medicine上的研究报告中,来自德国的科学家们通过研究人类机体对CRISPR-Cas9的免疫反应,结果发现,人类机体能对Cas9蛋白产生较为广泛的免疫力,如今研究人员正在开发多种创新性策略来确保CRISPR-Cas9基因编辑系统能在一系列临床应用中安全使用。 目前并没有足够的证据来评估该技术在人类机体中使用所带来的潜在风险和益处,通过研究人类机体对CRISPR-Cas9系统的免疫反应,研究人员或许就能成功填补这一研究领域的空白;研究者Schmuck-Henneresse说道,Cas9蛋白来源于链球菌属,其组成了CRISPR-Cas9系统的关键部分,链球菌的感染在人类机体中非常常见,因此研究人员推测,是否人类机体会对Cas9蛋白预先存在免疫记忆。 研究者在几乎所有的健康人类受试对象中都能发现其机体中T细胞会对Cas蛋白产生反应,Cas分子源于其它细菌,比如链球菌和胃肠道细菌等,其能够产生特殊类型的免疫反应,这一现象的产生或是由于酶类之间相似性较高所致;在基因疗法治疗期间,这些免疫细胞能够产生一些不好的免疫反应,从而潜在影响CRISPR-Cas9基因编辑技术的安全性和有效性,当然了,CRISPR-Cas9技术或许也存在一定风险,这是研究人员需要提前想好的。 研究者表示,这意味着在体内被遗传修饰的细胞并不应该被输入到CRISPR-Cas9系统依然保持活性的患者机体中,如今研究者开发了一种检测技术来确保细胞产物能够被安全使用,其能够可靠地确定患者机体的免疫反应风险是否处于较低的水平;然而,某些遗传性疾病会产生一些组织缺陷,这些缺陷在人类体外都无法被修饰,因此研究人员就需要寻找新型的解决手段来抑制机体对CRISPR-Cas9基因编辑工具所产生的危险免疫反应。 7. Methods Mol Biol:利用CRISPR/Cas9构建视网膜变性模型 doi:10.1007/978-1-4939-8669-9_14 加拿大哥伦比亚大学眼科学与视觉科学系的Feehan JM等人近日在Methods Mol Biol杂志上发表了一篇文章,他们利用CRISPR / Cas9基因编辑技术构建了视网膜变性的动物模型。 之前的研究已证明非洲爪蟾(Xenopus laevis)是可以用于快速构建和分析人视网膜疾病转基因模型的有效系统。然而,该系统缺乏稳健的基因插入和敲除的试验技术,因此受到一定的限制。在这里,他们通过使用Cas9基因编辑技术,构建了X.laevis胚胎,并对这个方案进行了详细的描述。 他们使用该技术将点突变引入X.laevis的基因组中,使阅读框内和框外产生插入和缺失。构建的动物模型允许对人类显性和隐性遗传疾病进行建模,并可以有效地产生基因敲低和敲除的效果。