《2018年10月CRISPR/Cas最新研究进展》

  • 来源专题:人类遗传资源和特殊生物资源流失
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-12-01
  • 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 即将过去的10月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。 1. Science子刊:发现一种新的Cas9能够靶向基因组中将近一半的位点 doi:10.1126/sciadv.aau0766 作为一种最广泛使用的Cas9酶,来自酿脓链球菌(Streptococcus pyogenes)的Cas9(SpCas9)的PAM序列为5′-NGG-3′。在这种PAM序列中,两个连续的碱基G的存在显著地限制了SpCas9能够靶向的位点数量,仅占基因组上的大约9.9%的位点。到目前为止,只有少数CRISPR酶具有最低的PAM要求,这意味着它们能够靶向更广泛的位点。图片来自Science Advances, doi:10.1126/sciadv.aau0766。 如今,在一项新的研究中,来自美国麻省理工学院的研究人员发现一种Cas9酶能够靶向基因组中几乎一半的位点,从而显著了拓宽它的潜在使用。相关研究结果发表在2018年10月24日的期刊上,论文标题为“Minimal PAM specificity of a highly similar SpCas9 ortholog”。他们最终发现他们寻找的一种最成功的酶为来自犬链球菌(Streptococcus canis)的Cas9(ScCas9),它与已经广泛使用的SpCas9酶非常相似。ScCas9看起来与SpCas9几乎完全相同,但是它能够靶向SpCas9不能够靶向的靶DNA序列。ScCas9的PAM序列为5′-NNGTT-3′。在这种PAM序列中,仅存在一个碱基G,这就允许ScCas9要比SpCas9靶向基因组中更多的位点:占基因组中将近一半的位点。 2. Science:重磅!发现迄今为止最小的功能性CRISPR系统---CRISPR-Cas14 doi:10.1126/science.aav4294 一群古老的包含地球上一些最小生命形式的微生物也拥有迄今为止发现的最小的CRISPR基因编辑系统。在这种基因编辑系统中,一种称为Cas14的蛋白与Cas9存在着亲缘关系,但在大小上仅为后者的三分之一。Cas9是革命性基因编辑工具CRISPR-Cas9中的一个发挥作用的蛋白组分。 虽然Cas9是从细菌中分离出来的,但是Cas14是在一群古细菌---细菌的原始亲属---的基因组中发现的。Cas9和其他的Cas蛋白是细菌进化出来的保护自己免受病毒入侵的防御系统的一部分。作为靶向酶,它们非常有选择性地寻找和结合细菌中的特定DNA或RNA序列,即那些与CRISPR记忆库中储存的序列相匹配的DNA或RNA序列,随后切割这种DNA或RNA序列,从而阻止新的病毒入侵者。与Cas9一样,Cas14具有作为生物技术工具的潜力。由于具有较小的体积,Cas14可能用于编辑小细胞或某些病毒中的基因。不过鉴于它的单链DNA切割活性,它更有可能改善目前正在开发的用于快速诊断传染病、基因突变和癌症的CRISPR诊断系统。 Cas14与Cas12和Cas13相类似,这是因为在结合到它的靶DNA序列上后,它开始不加选择地切割细胞内的所有单链DNA。相反,Cas9仅结合并切割靶双链DNA。不加选择地切割单链DNA可能是治疗中的一种缺点,但在诊断方面具有很大的优势。Cas14蛋白可与附着在单链DNA片段上的荧光标记物组合使用。当Cas14与它的靶DNA序列(一种癌基因或传染性细菌中的一种基因)结合并开始切割DNA时,它也会切割与这种荧光标记物连接在一起的单链DNA片段,从而产生荧光信号。 作为Harrington的一名同事,Janice Chen补充道,“Cas14以比Cas12更特异性的方式靶向单链DNA。这真地是一个非常意外的发现。这是因为它太小了,我们几乎认为它无法发挥作用,但是实际上,它是超级特异性的,这使得它成为诊断工具箱的一个非常强大的补充。 ” Harrington、Chen及其同事们(包括CRISPR-Cas9发明人、加州大学伯克利分校分子与细胞生物学教授Jennifer Doudna),已对Cas14进行改进,使得它能够用于当前使用Cas12和Cas13快速检测传染性生物和基因突变存在的诊断系统(称为DETECTR)之中(Science, Published Online: 15 Feb 2018, doi:10.1126/science.aar6245)。Harrington、Doudna和Chen是一家名为Mammoth Biosciences的公司的联合创始人,该公司正在将DETECTR商业化。 3. Cell:突破!科学家利用新型基因条形码技术鉴别出关键的癌症免疫基因 doi:10.1016/j.cell.2018.09.022 近日,一项刊登在国际杂志Cell上的研究报告中,来自西奈山医院的科学家们通过研究开发了一种能同时分析成百上千个基因功能的新型技术,该技术的分辨率能达到单细胞水平,其依赖于一种使用新型蛋白质的条形码技术。图片来源:CC0 Public Domain 研究人员就开发了一种新技术,其能以一种前所未有的规模来分析基因组,这或许就能够解决当前科学家们所面临的基因组学研究上的挑战。这种新工具能够利用名为表位的合成蛋白来贴上条形码并且追踪不同的CRISPRs,这种蛋白质条形码被称为优先代码(pro-code),其能够使得数百个CRISPRs一起来敲除大量基因。 当前有很多技术能够聚合CRISPRs,这些方法在很大程度上依赖于DNA作为条形码,并且只允许对基因功能进行较低分辨率的研究;而通过这种优先代码技术,研究人员就能够提供一种新方法来帮助科学家们深入理解基因的功能和生物学效应。文章中,研究人员利用优先代码技术搜寻了免疫系统保护机体抵御癌症所需要的基因,随后他们利用CRISPRs来靶向剔除推测的免疫调节基因,并将其与优先代码配对,随后将这种优先代码/CRISPRs (Pro-Code/CRISPR)文库引入到乳腺癌细胞中,这些肿瘤就会受到识别癌细胞的杀伤性T细胞的攻击和挑战,很多癌细胞就会被T细胞快速消灭,但有些癌细胞却会产生一定的耐受性。 4. Cell:重大进展!开发出让基因组重新组装的CRISPR-GO技术 doi:10.1016/j.cell.2018.09.013 在一项新的研究中,来自美国斯坦福大学的研究人员通过解除CRISPR-Cas9的“切割”功能,这种编辑工具变得更像是一种递送系统,这样就能够通过可编程的向导RNA(gRNA)将DNA片段递送到细胞核中的新位置上。这种称为CRISPR-基因组组装(CRISPR-genome organization, CRISPR-GO)的新技术使用一种经过修饰的CRISPR蛋白,从而在三维空间中重新组装基因组。如果CRISPR-Cas9像分子剪刀一样,那么CRISPR-GO就像分子镊子一样,抓住基因组中的特定部分,并且将它们放置在细胞核的新位置上。但是这并不仅仅是物理上的重新安置:改变DNA片段的位置能够改变它们的运作方式。相关研究结果于2018年10月11日在线发表在Cell期刊上,论文标题为“CRISPR-Mediated Programmable 3D Genome Positioning and Nuclear Organization”。论文通信作者为斯坦福大学化学与系统生物学助理教授Lei S. Qi博士。 CRISPR-GO有三个基本部分。首先,你想要重新定位的靶DNA片段所在的“地址”---一段DNA,它能够靶向一条互补的结合RNA的链。其次,你需要目标地址---你想要将染色质移动到的细胞核区室中的特定DNA部分。最后,还存在“桥(bridge)”,在这种情形下,它是一种催化剂,它促进靶DNA片段移动到它在细胞核中的目标地址。 通过使用CRISPR-GO,这些研究人员观察到重新定位到卡哈尔体(Cajal body)---作为细胞核中的一部分,它是一团无定形的且有些神秘的蛋白和RNA ---中的基因停止表达蛋白。他们首次有证据证实卡哈尔体能够具有直接的基因调节作用。这提示着卡哈尔体在控制转录方面有一些意想不到的作用。 当Qi利用CRISPR-GO将端粒DNA ---染色体上的与长寿相关的分子帽---从细胞核的中间移动到细胞核的边缘时,端粒停止生长,从而阻止细胞周期和降低细胞活力。然而,当端粒更靠近卡哈尔体时,相反的情形发生了:它们生长,并且通过这样做,细胞活力也增加了。 CRISPR-GO的第三种应用是形成早幼粒细胞白血病小体(promyelocytic leukemia body, PML小体)。众所周知,这种蛋白团块抑制促肿瘤基因表达。通过将它放置在细胞核中的致癌基因附近,Qi计划测试它是否能够有助于抑制肿瘤形成。 5. Nat Med:碱基编辑器取得重大进展!有望在产前治疗先天性疾病 doi:10.1038/s41591-018-0184-6; doi:10.1038/s41591-018-0215-3 在一项新的研究中,来自美国费城儿童医院和宾夕法尼亚大学佩雷尔曼医学院的研究人员首次进行产前基因编辑来阻止实验室动物出现致命性的代谢障碍,从而有潜力在出生前治疗人类先天性疾病。这就为在产前利用一种复杂的低毒的工具高效地对致病性基因中的DNA碱基进行编辑提供了概念验证。相关研究结果发表在2018年10月的Nature Medicine期刊上,论文标题为“In utero CRISPR-mediated therapeutic editing of metabolic genes”。论文通信作者为宾夕法尼亚大学佩雷尔曼医学院的Kiran Musunuru博士 和William H. Peranteau博士。图片来自Nature Medicine, doi:10.1038/s41591-018-0184-6。 这些研究人员使用了基因编辑工具CRISPR-Cas9和第三代碱基编辑器(base editor 3, BE3)靶向编辑一种调节胆固醇水平的基因,从而降低了在子宫内接受过这种治疗的健康小鼠中的胆固醇水平。他们还在一小部分事先经过基因改造而携带着导致一种致命性肝脏疾病---1型遗传性酪氨酸血症(hereditary tyrosinemia type 1, HT1)---的突变的小鼠中使用产前基因编辑来改善它们的肝脏功能和阻止新生小鼠死亡。 6. Nat Med:在体内利用新型碱基编辑器有望治疗遗传疾病 doi:10.1038/s41591-018-0209-1; doi:10.1038/s41591-018-0215-3 苯丙酮尿症(phenylketonuria)的病因是编码苯丙氨酸羟化酶(phenylalanine hydroxylase, Pah)的基因发生突变。这种由肝细胞产生的酶代谢苯丙氨酸。这种代谢障碍是一种“常染色体隐性”遗传疾病:儿童如果从母亲那里遗传一个突变基因拷贝和从父亲那里遗传一个突变基因拷贝,那么就会患上这种疾病。到目前为止,这种疾病仍然是无法治愈的。 在一项新的研究中,来自瑞士苏黎世联邦理工学院和苏黎世大学的研究人员利用一种方法纠正肝细胞中的两个突变基因拷贝,从而治愈这种疾病。他们取得成功,至少是在小鼠体内。相关研究结果发表在2018年10月的Nature Medicine期刊上,论文标题为“Treatment of a metabolic liver disease by in vivo genome base editing in adult mice”。论文通信作者为苏黎世联邦理工学院的Gerald Schwank教授。 这种由胞苷脱氨酶(cytidine deaminase)加以强化的CRISPR/Cas9系统结合到这两个需要被校正的基因拷贝上,并且在局部打开DNA双链。胞苷脱氨酶将致病性的DNA碱基对C-G转化为健康人体内对应基因组位点上存在的碱基对T-A。这能够校正Pah酶编码基因中的DNA碱基错误。通过这种方法,这些研究人员改变了成年小鼠中这两个突变基因拷贝中的碱基序列。这些经过校正的肝细胞能够产生功能性的Pah酶,这些小鼠所患的这种疾病被治愈了。7. 新研究挑战用于构建条件性基因敲除小鼠的CRISPR方法 doi:10.1101/393231 在一项新的研究中,一个由全球17个实验室组成的联盟提供的结果与一项高度引用的研究(Cell, 12 September 2013, doi:10.1016/j.cell.2013.08.022)---它描述了一种利用CRISPR构建条件性基因敲除小鼠的技术---相矛盾。这项新的研究表明与那项原始的研究相比,这种技术的效率要低得多。相关研究结果[2]于2018年9月1日发表在预印本服务器bioRxiv上,论文标题为“Re-Evaluating One-step Generation of Mice Carrying Conditional Alleles by CRISPR-Cas9-Mediated Genome Editing Technology”。图片来自bioRxiv, doi:10.1101/393231。 这项新研究的结果指出了那项原始研究的局限性,后者取得的成功似乎被归因为剔除杂合小鼠品系中的特定基因。根据谷歌学者(Google Scholar)网站的统计,那项原始研究被引用了将近1000次。它的主要作者坚持认为他的方法是强有力的。 在学术会议和其他地方,一个紧密结合的研究团体针对其他实验室利用这种技术所面临的挑战开展的讨论使得主管澳大利亚国立大学转基因机构的Gaetan Burgio和他的同事们试图确定出了什么问题。 首先,三个实验室在不同的小鼠品系中复制了这项靶向同一个基因的原始实验,但没有取得成功。接下来,包括这三个实验室在内的17个实验室在5种不同的小鼠品系中针对小鼠基因组中的总共56个基因和2个基因间区域独立地重复这项实验。来自所有这些实验室的数据集经合并后包括17887个显微注射或电穿孔的小鼠受精卵和产生的1718只活小鼠,其中仅15只小鼠具有条件性对照所需的两个插入的LoxP位点。在所有接受测试的小鼠中,观察到脱靶的缺失或突变代替LoxP位点的正确插入。 与那项原始研究在小鼠中获得条件性敲除等位基因的效率为16%相比,Burgio和其他人的成功率仅为0.87%。 8. Nature:利用CRISPR/Cas系统开发出一种存储转录事件的细胞记录设备 doi:10.1038/s41586-018-0569-1 在一项新的研究中,来自瑞士苏黎世联邦理工学院和巴塞尔大学的研究人员利用CRISPR-Cas系统开发出一种新的记录设备:它产生的DNA片段能够提供关于某些细胞过程的信息。在未来,这种细胞存储设备甚至可能用于诊断中。相关研究结果于2018年10月3日在线发表在Nature期刊上,论文标题为“Transcriptional recording by CRISPR spacer acquisition from RNA”。 这些研究人员利用肠道细菌大肠杆菌开展研究,将来自一种不同的细菌物种的编码CRISPR-Cas系统的基因导入到大肠杆菌中。其中的一个Cas基因与一种逆转录酶融合在一起,其中逆转录酶是利用mRNA分子产生编码相同信息的DNA ---换句话说,它将mRNA逆转录为DNA。 导入这些编码CRISPR-Cas的外源基因的大肠杆菌细胞能够产生一种结合短mRNA分子的蛋白复合物。这种逆转录酶将mRNA翻译为含有与初始的mRNA相同的遗传信息的DNA,然后将它们作为间隔序列存储在CRISPR阵列中。这种过程能够多次发生,从而使得新的间隔序列以相反的时间顺序添加到CRISPR阵列,因此最近获得的DNA片段总是位于最前面。 作为他们研究的一部分,这些研究人员记录了配备有这种数据记录器的大肠杆菌对除草剂百草枯作出的反应。这种除草剂引起细胞内mRNA转录发生变化,这样他们就能够在接触除草剂几天后从CRISPR阵列中读出这种反应。如果没有这种数据记录器,大肠杆菌与这种除草剂接触的任何分子痕迹早就会被破坏,这种信息也就丢失了。 9. Nat Biotechnol:利用CRISPR-Cas9基因组编辑技术从头培育出新的作物品种 doi:10.1038/nbt.4272 在一项新的研究中,来自巴西、美国和德国的研究人员首次使用CRISPR-Cas9(一种现代的基因组编辑过程)在一代中就利用野生植物中培育出新的作物。从野生番茄开始,他们引入了多种作物的性状,同时又不会丧失这种野生植物的宝贵遗传特性。相关研究结果于2018年10月1日在线发表在Nature Biotechnology期刊上,论文标题为“De novo domestication of wild tomato using genome editing”。图片来自Nature Biotechnology, doi:10.1038/nbt.4272。 作为亲本植物物种,这些研究人员选择了醋栗番茄(Solanum pimpinellifolium),它是来自南美洲的野生番茄,也是现代栽培番茄的祖先。这种野生植物的果实只有豌豆的大小,产量低---这两种特性使它不适合作为作物。另一方面,它的果实比现代的西红柿更芳香,这是因为现代的西红柿由于育种而失去了一些味道。此外,这种野生果实含有更多的番茄红素(lycopene)。这种所谓的自由基清除剂被认为是一种有价值的抗氧化剂。 这些研究人员通过使用多重CRISPR-Cas9修饰这种野生植物,从而使得后代植物的6个基因发生较小的遗传修饰。这些决定性基因被认为是这种现代的驯化番茄特征的遗传关键。具体而言,他们对这种野生番茄的基因组进行了以下修饰而培育出新的品种:这种新品种的果实比这种野生番茄大三倍,这相当于樱桃番茄的大小。这种新品种的果实产量增加了10倍,而且它们的形状是椭圆形的,相比之下,这种野生番茄的果实是圆形的。这种属性很受欢迎,这是因为当下雨时,圆形果实比椭圆形果实更快地分开。这种经过基因修饰的野生番茄也具有更紧凑的生长。 10. Nature子刊:开发出CHAOS方法阻止抗生素耐药性超级细菌产生 doi:10.1038/s42003-018-0135-2 为了开发出可持续的长期解决方案,来自科罗拉多大学博尔德分校的研究人员在一项新的研究中,开发出一种CHAOS(Controlled Hindrance of Adaptation of OrganismS, 控制和阻止有机体的适应性)方法:利用CRISPR DNA编辑技术对细菌细胞内的多种基因表达进行修饰,从而阻止细菌性病原体中的这个至关重要的适应过程和破坏它进化出防御的能力。这些研究结果可能开辟了关于如何最好地限制细菌抗生素耐药性产生的新研究途径。相关研究结果近期发表在Communications Biology期刊上,论文标题为“Multiplexed deactivated CRISPR-Cas9 gene expression perturbations deter bacterial adaptation by inducing negative epistasis”。论文第一作者为科罗拉多大学博尔德分校化学与生物工程系研究员Peter Otoupal。 2013年,Otoupal和他的同事们开始寻找能够作为大肠杆菌的细胞杀伤开关的基因。当他们一次调整一个基因时,这种细菌能够适应并存活下来。但是当他们一次改变两个或多个基因时,这些细菌细胞变弱了。这种CHAOS方法利用这种效应,调整多个基因的表达,从而增加细菌细胞的压力并最终引发连锁反应,使得它们更容易受到当前药物治疗的影响。这种技术不会改变细菌的DNA本身,仅会改变多个基因的表达。

相关报告
  • 《2018年9月CRISPR/Cas最新研究进展 》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-12-01
    • 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 即将过去的9月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。 1. Nat Biotechnol:将细菌基因组致病岛改造成一种抗葡萄球菌神器 doi:10.1038/nbt.4203 金黄色葡萄球菌(Staphylococcus aureus)通常对抗生素产生耐药性,因而对安全的医院护理构成威胁。在一项新的研究中,来自美国纽约大学医学院的研究人员发现,从病毒进化而来的基因组“岛屿(islands)”能够转化为阻止金黄色葡萄球菌感染的抗菌“无人机(drones)”。相关研究结果于2018年9月24日在线发表在Nature Biotechnology期刊上,论文标题为“Conversion of staphylococcal pathogenicity islands to CRISPR-carrying antibacterial agents that cure infections in mice”。 他们发现某种类型的细菌DNA经基因改造后能够让杀死或致残细菌的基因替换致病性基因。图片来自Nature Biotechnology, doi:10.1038/nbt.4203。 这种研究中着重关注的这种类型的细菌DNA是一种“致病岛(pathogenicity island, 也译作毒力岛)”,它是从病毒中进化而来的,并且永久地停留在病毒感染的细菌中,成为其遗传系统的一部分。结果就是形成一种混合实体(hybrid entity),这种混合实体含有细菌在繁殖时传递给后代的有用基因,但在某些情况下也会切除细菌上层结构,并像病毒一样被包装在蛋白外壳(衣壳)中,这样就将它的DNA注射到其他的细菌细胞中。 这些研究人员表示,这种进化飞跃的混合体将基因组岛屿塑造成完美的类似于无人机的载体,为细菌群体运送基因载荷(genetic payload)。当通过注射让小鼠遭受致命性的葡萄球菌感染时,他们进行基因改造过的金黄色葡萄球菌致病岛(SaPI)杀死了这些细菌并拯救了这些遭受感染的小鼠。 2. Nature子刊:利用经过CRISPR基因编辑的皮肤贴片阻止可卡因过量吸食 doi:10.1038/s41551-018-0293-z 有尼古丁贴片(nicotine patch)来帮助戒烟,随后还有这个:皮肤贴片,经基因改造后产生一种消化可卡因的酶,并且当被移植到小鼠身上时,它们让这些小鼠抵抗致死剂量的可卡因。在一项新的针对这种皮肤贴片策略的研究,来自美国芝加哥大学的研究人员希望这可能有朝一日能够导致一种治疗人类成瘾和阻止可卡因过量吸食的方法。相关研究结果于2018年9月17日在线发表在Nature Biomedical Engineering期刊上,论文标题为“Genome-edited skin epidermal stem cells protect mice from cocaine-seeking behaviour and cocaine overdose”。论文通信作者为芝加哥大学干细胞研究员Xiaoyang Wu和芝加哥大学成瘾研究员Ming Xu。 Wu团队之前曾使用CRISPR基因编辑技术,用表达胰岛素的细胞为糖尿病小鼠制造出一种皮肤贴片,他想知道这种策略是否也适用于可卡因成瘾。根据一项调查,90多万美国人滥用这种药物。因此,Wu与Xu合作开展实验。 人类天然地会产生一种被称作丁酰胆碱酯酶(butyrylcholinesterase)的酶,这种酶能够降解可卡因,但是这些研究人员想要让他们的皮肤移植物能有更强大的功能。因此,他们使用了另一个研究团队已设计出的这种酶的增强形式,它降解可卡因的活性是这种酶原始形式的4400倍。他们利用CRISPR将编码这种酶加强形式的基因插入到小鼠的皮肤表皮干细胞中,将这些细胞接种到1厘米宽的圆形支架上,然后将所形成的组织(即皮肤贴片)移植到对可卡因上瘾的小鼠身上。 存在的一个问题是这种技术是否能够像相对较小的胰岛素那样,让相对较大的经过修饰的丁酰胆碱酯酶进入血液。不过这个实验取得了成功:在移植两周后,一剂原本会致命的可卡因对小鼠没有明显的影响---显然,这种酶在这种药物(如果有的话)的大多数能够达到小鼠的大脑之前就会将它降解掉。之前对可卡因上瘾的小鼠在接受这种皮肤贴片移植后不再表现出对它们所在的封闭空间中的一个区域的偏好性,这是它们学会了将这个区域与可卡因摄入相关联在一起。在移植10周后,这种皮肤贴片继续产生这种酶直至实验结束。 3. Science:重大进展!构建出增加基因组靶向范围的CRISPR/Cas9系统 doi:10.1126/science.aas9129 在CRISPR/Cas9系统中,酶Cas9在DNA靶位点上进行切割,其中这种靶位点是这样确定的:一种被称作CRISPR RNA(crRNA)的RNA分子利用它的一部分序列与另一种被称作tracrRNA的RNA分子通过碱基配对结合在一起,形成嵌合RNA(tracrRNA/crRNA),然后,借助crRNA的另一部分序列与靶DNA位点进行碱基配对,以这种方式,这种嵌合RNA就能够引导Cas9结合到这个靶位点上并进行切割。在实际应用时,人们可以将tracrRNA和crRNA作为两种向导RNA(gRNA)或者融合在一起形成单向导RNA(single guide RNA, sgRNA),并被用来引导酶Cas9结合到靶DNA序列上并进行切割,其中Cas9与sgRNA一起被称作Cas9-sgRNA系统。图片来自Frontiers in Genetics, 24 September 2015, doi:10.3389/fgene.2015.00300。 此外,CRISPR/Cas9系统靶向识别和切割与前间隔序列邻近基序(protospacer adjacent motif, PAM)相邻的特定DNA位点。作为一种最为频繁用于基因组编辑的Cas9酶,来自酿脓链球菌(Streptococcus pyogenes)的Cas9(SpCas9)仅识别作为PAM的NGG序列(简称NGG PAM,其中N代表任何一种碱基),这就限制了基因组中能够被靶向的区域。 在一项新的研究中,为了解决这个限制,来自日本东京大学、庆应义塾大学、大阪大学和美国布罗德研究所、麦戈文脑研究所和麻省理工学院的研究人员构建出一种合理设计的SpCas9变异体(SpCas9-NG),它能够识别NG而不是NGG。这种SpCas9-NG变异体增加了基因组中的靶向范围,但是具有与野生型SpCas9类似的特异性。晶体结构揭示出与第三个碱基之间的碱基特异性相互作用的丧失得到新引人的非碱基特异性相互作用的补偿,从而能够识别作为PAM 的NG序列(NG PAM)。 这些研究人员进一步证实在人细胞中,这种SpCas9-NG变异体在携带着NG PAM的内源性靶位点中诱导碱基插入或删除(insertion or deletion, indel)。 最后,这些研究人员还发现将这种SpCas9-NG变异体与活化诱导的胞苷脱氨酶(activation-induced cytidine deaminase, AID)融合在一起能够调节人细胞中携带着NG PAM的靶位点上的C→T转化,即由碱基胞嘧啶(C)转化为碱基胸腺嘧啶(T)。 4. Cell:首次解析出CRISPR-Cas13d的三维结构,有助揭示它的RNA靶向机制 doi:10.1016/j.cell.2018.09.001 如今,在一项新的研究中,来自美国沙克生物研究所的研究人员首次解析出CRISPR-Cas13d的详细分子结构。CRISPR-Cas13d是新兴的RNA编辑技术中的一种有希望的酶。他们能够利用低温电镜技术(cryo-EM)可视化观察这种酶,其中cryo-EM是一种前沿的技术,让人们能够以前所未有的细节捕捉复杂分子的结构。相关研究结果发表在2018年9月20日的Cell期刊上,论文标题为“Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d”。论文通信作者为沙克生物研究所的Patrick D. Hsu和Dmitry Lyumkis。论文第一作者为沙克生物研究所的Cheng Zhang和Silvana Konermann。 在这项新的研究中,这些研究人员通过让CRISPR-Cas13d在不同的动态状态下冻存,并利用cryo-EM解析出这种酶的新的结构细节,从而能够破解它的一系列活性,而不是仅在一个时间点观察到一种活性。 5. Nature:重大突破!发现环状核酸酶通过降解环状寡腺苷酸让III型CRISPR/Cas系统失活 doi:10.1038/s41586-018-0557-5 在一项新的研究中,来自苏格兰圣安德鲁斯大学的研究人员鉴定出CRISPR基因组工程工具包中的一个重要的新组分。这将引发遗传病和感染治疗变革。相关研究结果于2018年9月19日在线发表在Nature期刊上,论文标题为“Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate”。论文通信作者为圣安德鲁斯大学生物学院生物医学科学研究中心的Malcolm White教授,论文第一作者为圣安德鲁斯大学的Januka S. Athukoralage和Christophe Rouillon。图片来自Nature, doi:10.1038/s41586-018-0557-5。 人类利用干扰素途径来发出感染存在的信号并调动体内的防御。最近,科学家们发现了CRISPR系统的一个意外方面:入侵病毒的遗传物质触发了环状分子的合成。这些环状分子是由4或6个腺苷一磷酸(AMP)分子连接在一起而形成的,而且与干扰素一样,是让细胞进入抗病毒状态的信号分子。它们通过激活一系列破坏入侵病毒并提供免疫力的降解酶来做到这一点。但是,如果长时间处于激活状态的话,细胞也会死亡。为了避免这种命运,人们预测细胞具有分子“关闭开关(off switch)”,一旦感染被清除,这种“关闭开关”就会清除这些环状分子。 当开始研究时,Athukoralage着手寻找这种难以捉摸的“关闭开关”。他成功地纯化出一种酶,他命名为“环状核酸酶(ring nuclease)”,它特异性地降解环状分子。通过与来自圣安德鲁斯大学生物学院生物医学科学研究中心的同事们合作,他展示了这种环状核酸酶如何结合并切割环状分子,从而证实一旦病毒遭受破坏,这种“关闭开关”如何让细胞恢复到未受感染的状态。 6. Nat Microbiol:CRISPR筛选技术能够找到抵抗黄病毒感染的关键基因 doi:10.1038/s41564-018-0244-1 最近,来自西南医学中心的研究人员首次使用CRISPR全基因组筛选手段鉴定出一种有助于细胞抵抗黄病毒感染的基因。黄病毒是一类令人讨厌的病原体,其中包括西尼罗河病毒,登革热,寨卡病毒和黄热病。在这项发表在《Nature Mircobiology》杂志上的一项研究中,John Schoggins博士领导的研究小组利用CRISPR技术鉴定出IFI6基因是一种靶向黄病毒的强效抗病毒基因。之后,研究人员利用传统的细胞试验证实该基因在防止寨卡病毒,西尼罗河病毒,登革热病毒和黄热病病毒感染方面的作用。 Schoggins博士称,他们最近开发的全基因组CRISPR筛选技术能够帮助确定哪种干扰素诱导的基因在抑制黄病毒感染方面发挥了重要作用。“我们对IFI6如何抑制黄病毒进行了相关的表型和机制研究,同时通过CRISPR筛选,使我们能够找到IFI6这一抑制黄病毒感染的因子”,作者说到。 在细胞培养研究中,作者发现IFI6基因表达的蛋白质能够有效抑制肝脏中黄热病的感染,同时能够抑制登革热,寨卡病毒和西尼罗河病毒的感染。研究人员通过在肾脏和皮肤细胞系以及神经元中重复实验证实了上述结果。 7. Nature:重磅!新研究使得在体内进行CRISPR/Cas9精准基因组编辑成为可能 doi:10.1038/s41586-018-0500-9 在临床中使用CRISPR/Cas9基因编辑的一个障碍是Cas9核酸酶可能会在错误的位点上切割DNA。在一项新的研究中,来自美国麻省总医院和英国阿斯利康公司的研究人员描述了一种在整个基因组中预测这些脱靶突变的策略,并且在小鼠中证实经过精心设计的向导RNA(gRNA)链不会产生任何可检测到的切割错误。相关研究结果于2018年9月12日在线发表在Nature期刊上,论文标题为“In vivo CRISPR editing with no detectable genome-wide off-target mutations”。论文通信作者为阿斯利康公司生物学家Marcello Maresca和麻省总医院生物学家与病理学家J. Keith Joung。 为了开发出一种让脱靶效应最小化的方法, Maresca团队与Joung团队合作。他们开发出的这种方法的第一部分---最初由Joung团队开发并于2017年发表(Nature Methods, doi:10.1038/nmeth.4278)---是在体外完成的。首先,他们将基因组DNA ---在这项新的研究中,他们用的是小鼠基因组---切割为大约长300个碱基对的片段,随后给这些片段连接上一系列让DNA环化的接头(adapter)。他们引入Cas9和gRNA的复合物,这种复合物在某些位点上切割环状DNA,从而让它线性化。 另一批核酸酶会降解剩余的未被切割的环状DNA。通过这种方式,这些研究人员能够对线性化的DNA进行测序,以便观察Cas9切割(不论是有意的还是无意的)的位点并预测gRNA是否会导致体内脱靶效应。 作为在这项新的研究中开发出的这种方法的第二部分,这些研究人员在小鼠中测试了他们的预测结果。当他们使用他们在体外发现的会在基因组中数千个错误位点进行切割的gRNA时,在他们检查的一部分的预测位点中,超过40%的位点也在小鼠肝脏中发生突变。一个位点在体外筛选中出现的频率越高,它在体内发生突变的可能性就越大。换句话说,在体外发生差错的gRNA在体内也会发生差错。 这些研究人员还在体内实验中检查了小鼠基因组中的通过计算预测可能为脱靶位点但是迄今为止并未在他们的体外筛选过程中出现的位点。他们并没有在这些位点上检测到突变,这意味着他们的体外方法可能不会错过真正的脱靶位点。8. PNAS:核小体或会抑制“基因魔剪”CRISPR-Cas9的切割效率 doi:10.1073/pnas.1810062115 近日,一项刊登在国际杂志Proceedings of the National Academy of Sciences上的研究报告中,来自犹他大学的科学家们通过研究发现,核小体会抑制CRISPR/Cas9的切割效率,文章中,研究人员描述了如何在酵母样本中检测相关的基因编辑技术以及他们的研究发现。 “基因魔剪”CRISPR/Cas9能够利用导向RNA来寻找并且切割DNA片段,但当靶向片段是核小体的一部分会发生什么呢?此前研究人员通过研究发现,在这种情况下,似乎CRISPR/Cas9的切割效率会被降低;这项研究中,研究人员通过对这种情况进行体内试验发现,此前的研究结果是正确的,即利用CRISPR/Cas9切割核小体或许会降低其作用效率。 文章中,研究人员利用CRISPR/Cas9技术对活酵母中不同的导向RNAs进行编辑,这就能够实现对不同靶点的编辑。研究者表示,相比非核小体的区域而言,当对核小体区域进行编辑时,CRISPR/Cas9的编辑效率会发生降低;当研究人员对诸如锌指等基因编辑技术进行监测时,他们并未发现任何差异,后期研究人员或将进行更为深入的研究来改善CRISPR/Cas9对核小体区域进行基因编辑的效率。 9. 重磅!两篇Science首次发现阻断CRISPR/Cas12a的抗CRISPR蛋白 doi:10.1126/science.aau5138; doi:10.1126/science.aau5174 在两项新的研究中,两个研究团队利用生物信息学方法鉴定出阻断Cas12a的抑制蛋白。尽管过去的研究已鉴定出几种阻断Cas9的抑制剂,但是这些抑制Cas12a的蛋白是迄今为止已知的首批阻断Cas12a的蛋白。相关研究结果于2018年9月6日在线发表在Science期刊上,论文标题分别为“Systematic discovery of natural CRISPR-Cas12a inhibitors”和“Discovery of widespread Type I and Type V CRISPR-Cas inhibitors”。 在第一项新的研究中,来自美国加州大学伯克利分校的研究人员利用一种全面的生物学信息学和实验筛选方法鉴定出三种阻断或减少在人细胞中进行CRISPR/Cas12a介导的基因组编辑的抑制剂。他们还发现CRISPR自我靶向和抑制剂出现率在原核生物基因组中存在广泛的关联性,这提示着一种从微生物世界中发现更多的Acr蛋白的直接途径。图片来自Cell, doi:10.1016/j.cell.2016.12.038。 在第二项新的研究中,来自美国加州大学旧金山分校、麻省总医院和哈佛医学院的研究人员发现了12个Acr基因,这些基因编码的Acr蛋白包括抑制V-A型CRISPR/Cas系统和I-C型CRISPR/Cas系统的蛋白,如AcrVA1。 值得注意的是,当在人细胞中进行测试时,AcrVA1最为有效地抑制Cas12a的一系列直向同源物,包括MbCas12a、Mb3Cas12a、AsCas12a和LbCas12a。这项研究发现的这12个Acr基因提供了有用的对CRISPR基因编辑进行控制的生物技术工具。
  • 《2018年11月CRISPR/Cas最新研究进展》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-12-01
    • 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。 2018年11月26日,中国科学家贺建奎声称世界上首批经过基因编辑的婴儿---一对双胞胎女性婴儿---在11月出生。他利用一种强大的基因编辑工具CRISPR-Cas9对这对双胞胎的一个基因进行修改,使得她们出生后就能够天然地抵抗HIV感染。这也是世界首例免疫艾滋病基因编辑婴儿。这条消息瞬间在国内外网站上迅速发酵,引发千层浪。有部分科学家支持贺建奎的研究,但是更多的是质疑,甚至是谴责。 即将过去的11月份,有哪些重大的CRISPR/Cas研究或发现呢?小编梳理了一下这个月生物谷报道的CRISPR/Cas研究方面的新闻,供大家阅读。 1. CRISPR基因组编辑有望用于整形外科中 doi:10.1097/PRS.0000000000004863 CRISPR基因组编辑技术有望导致基因工程和治疗发生“变革性飞跃”,它几乎影响到医学的每个领域。根据2018年11月发表在美国整形外科学会(American Society of Plastic Surgeon)官方期刊Plastic and Reconstructive Surgery上的一篇标题为“CRISPR Craft: DNA Editing the Reconstructive Ladder”的论文,所涉及的医学领域包括整形手术,这种基因组编辑技术有望在从预防颅面畸形到治疗性皮肤移植再到新型无排斥移植等方面取得潜在的进展。美国整形外科学会会员、麻省总医院外科医生Eric Chien-Wei Liao博士说,“CRISPR对治疗人类疾病的潜在影响包括对整形外科医生比较重要的几个领域,比如肿瘤学、伤口愈合、免疫学和颅面畸形。”在这篇关于再生医学的特稿论文中,Liao博士等人回顾了CRISPR基因组编辑的历史和机制,强调了它在整形手术(plastic surgery)和重建手术(reconstructive surgery)中的潜在用途和影响。2.Nature子刊:利用 纳米 磁铁对体内CRISPR/Cas9基因组编辑进行空间控制 doi:10.1038/s41551-018-0318-7 在一项新的研究中,美国莱斯大学生物工程师Gang Bao及其团队将磁性纳米颗粒与一种从苜蓿环纹夜蛾(Autographa californica, 一种原产于北美洲的蛾类物种)体内获得的病毒相结合开发出一种运送载体来运送CRISPR/Cas9,从而通过空间控制对特定组织或器官中的基因进行修饰。相关研究结果于2018年11月12日在线发表在Nature Biomedical Engineering期刊上,论文标题为“Spatial control of in vivo CRISPR–Cas9 genome editing via nanomagnets”。 源自这种病毒的圆柱形杆状病毒载体(baculovirus vector, BV)被认为足够大,它的直径高达60nm,长度高达200~300纳米。这种大小足够运送长38000多个碱基对的DNA。 这些研究人员仅在需要时利用磁性纳米颗粒激活这种杆状病毒载体并运送用于基因编辑的有效载荷。为了做到这一点,他们使用了一种名为C3的免疫系统蛋白,其中,在正常情形下,蛋白C3让杆状病毒灭活。施加磁场允许杆状病毒载体转导,即一种将有效载荷引入到靶细胞中的过程。这种有效载荷也是DNA,它编码一种报告基因和CRISPR/Cas9系统。在测试中,杆状病毒载体携带着绿色荧光蛋白或萤火虫荧光素酶。具有这种蛋白的细胞在显微镜下明亮地发光,并且实验表明在细胞培养物和实验室动物中,利用磁铁高效地靶向运送携带着有效载荷的杆状病毒载体。 3. Cell:开发出SLICE工具,鉴定出人T细胞免疫功能的关键调节基因 doi:10.1016/j.cell.2018.10.024 在一项新的研究中,来自美国加州大学旧金山分校的研究人员设计出一种基于CRISPR的称为SLICE(single guide RNA lentiviral infection with Cas9 protein electroporation, 即利用Cas9蛋白电穿孔进行单向导RNA慢病毒感染)的系统,这种系统将使得科学家们能够快速评估直接从患者体内提取出的“原代”免疫细胞中每个基因的功能。这种新方法为科学家们提供了一个强大的工具,能够在确定如何最好地改造免疫细胞来对抗癌症和一系列其他疾病时指导他们作出决策。相关研究结果于2018年11月15日在线发表在Cell期刊上,论文标题为“Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function”。论文通讯作者为加州大学旧金山分校微生物学与免疫学副教授Alexander Marson博士。论文第一作者为加州大学旧金山分校的Eric Shifrut 和Julia Carnevale。图片来自Cell, doi:10.1016/j.cell.2018.10.024。作为一种概念验证,这些研究人员测试了他们是否能够利用SLICE鉴定出让T细胞---一种常见的免疫细胞类型---更有效地增殖的基因。这对于癌症免疫疗法尤为重要,这是因为癌症免疫疗法利用人工刺激的经过基因改造的T细胞来杀死癌症。到目前为止,这些疗法仅对某些恶性肿瘤有效,不过科学家们认为,鉴定出促进T细胞增殖的基因能够让癌症免疫疗法适用于更多的患者。 利用SLICE,这些研究人员能够鉴定出促进T细胞增殖的基因,以及抑制这种增殖的基因。虽然其中的一些基因之前已利用其他的发现方法进行了描述,但是许多基因都是全新的,这表明SLICE能够揭示其他方法未能捕获的关键性的增殖调节因子。 在鉴定出这些基因后,这些研究人员从多个人类供者中获得原代T细胞,并剔除了经发现抑制T细胞增殖的基因。当这些经过CRISPR修饰的T细胞在癌症存在下进行培养时,它们显示出显著改善的癌症杀伤能力,这表明科学家们能够对利用SLICE鉴定出的基因进行编辑,从而将普通的T细胞转化为一种潜在的强效疗法。 4.Nature:精确编辑基因有戏!利用机器学习算法准确地预测细胞如何修复CRISPR诱发的DNA断裂 doi:10.1038/s41586-018-0686-x 当双螺旋DNA因损伤(比如X射线暴露)发生断裂时,细胞中的分子机器会开展基因“自动校正(auto-correction)”,从而将基因组重新连接在一起,但是这种修复通常是不完美的。细胞中的天然DNA修复过程能够以一种看似随机且不可预测的方式在断裂位点处添加或移除DNA片段。利用CRISPR-Cas9编辑基因能够在特定位点上让DNA发生断裂,但是这可能会产生“拼写错误(spelling error)”,从而改变基因的功能。这种对CRISPR诱导的损伤作出的反应称为“末端连接(end joining)”,对让基因失去功能是非常有用的,但是科学家们认为它太容易出错而不能够用于治疗目的。 不过一项新的研究推翻了这个观点。通过构建出一种预测人类细胞和小鼠细胞如何对CRISPR诱导的DNA断裂作出反应的机器学习算法,来自美国麻省理工学院、麻省总医院、哈佛大学、布莱根妇女医院和布罗德研究所的研究人员发现细胞经常以精确和可预测的方式修复断裂的基因,有时甚至让突变基因返回到它们的健康版本。此外,他们将这种预测能力用于测试,并成功地校正了从患有两种罕见遗传疾病之一的患者体内获取的细胞中的基因突变。这项研究表明细胞的基因自我校正能力有朝一日可能与基于CRISPR的疗法联合使用,通过精确地切割DNA和允许细胞天然地修复损伤来校正基因突变。相关研究结果于2018年11月7日在线发表在Nature期刊上,论文标题为“Predictable and precise template-free CRISPR editing of pathogenic variants”。论文通信作者为布罗德研究所副所长David Liu教授、麻省理工学院计算机科学与生物工程教授David Gifford和布莱根妇女医院医学助理教授Richard Sherwood。 在这项新的研究中,这些研究人员开发出一种策略来观察细胞如何修复小鼠和人类基因组中CRISPR靶向切割的2000个位点。在观察到细胞如何修复这些切割之后,他们将所获得的数据输入到一种称为inDelphi的机器学习模型中,从而促进这种算法学习细胞如何对每个位点上的切割作出反应,也就是细胞将哪些DNA片段添加到每个受损基因上,或者从每个受损基因中移除哪些DNA片段。 他们发现inDelphi能够识别出切割位点上的模式,这些模式可预测在经过校正的基因中发生了哪些DNA片段插入和缺失。在很多位点上,经过校正的基因并不包含大量的变异,而是一种单一的结果,如校正致病性的基因。 事实上,在利用inDelphi查询通过切割恰当的位点能够校正的疾病相关基因后,这些研究人员发现了将近200种致病性的基因变异体,这些变异体在通过CRISPR相关酶切割后大部分被校正为正常的健康形式。他们也能够校正来自患有两种罕见遗传疾病---赫曼斯基-普德拉克综合征(Hermansky-Pudlak syndrome)和门克斯病(Menkes disease)---的患者的细胞中的基因突变。 5. Circ Res:重大进展!利用CRISPR/Cas9基因组编辑有望阻止心源性猝死 doi:10.1161/CIRCRESAHA.118.313369 在一项新的研究中,美国贝勒医学院的Xander Wehrens博士及其同事们研究了心脏病,包括遗传性心律失常。除了经常与心源性猝死的高发病率相关之外,这些疾病是很难治疗的。相关研究结果近期发表在Circulation Research期刊上,论文标题为“In Vivo Ryr 2 Editing Corrects Catecholaminergic Polymorphic Ventricular Tachycardia”。图片来自Circulation Research, doi:10.1161/CIRCRESAHA.118.313369。 Wehrens说,“对这项特殊的研究而言,我们的灵感来自一名患上一种称为儿茶酚胺性多形性室性心动过速(catecholaminergic polymorphic ventricular tachycardia, CPVT)的遗传性心律失常的年轻患者。我们的这名患者有反复发作的心律失常---心跳过快或不规则---以及昏厥发作。这名患者的几名家庭成员已将近出现致命性的心律失常或心源性猝死。当前的治疗选择包括抗心律失常药物和植入式除颤器---一种校正某些不规则心跳的装置---对这名患者来说并不是最佳选择。” 遗传学研究已表明年轻患者心律失常的原因是基因RYR2发生突变。这种基因发生的突变占将近60%的CPVT病例。这种基因编码的蛋白形成一种调节心肌细胞中钙离子流动的通道。心肌细胞需要适当的钙离子流动,从而能够以一种协调的方式进行收缩和舒张。 Wehrens和Lagor设计了AAV载体,将CRISPR/Cas9(AAV-CRISPR)运送到活体动物的心脏中。他们推断清除RYR2基因的致病性拷贝(携带着R176Q突变),能够校正小鼠所患的这种致命性的心律失常。为了测试这种新方法,AAV-CRISPR被用来选择性地破坏R176Q CPVT小鼠模型中的RYR2突变基因。在出生10天后,携带R176Q突变的小鼠和正常小鼠接受单次注射AAV-CRISPR或安慰剂治疗。五到六周后,这些研究人员对这些小鼠进行了评估,结果非常令人鼓舞。携带致病性R176Q突变且接受AAV-CRISPR治疗的小鼠均未发生心律失常。相比之下,71%的携带着这种突变且接受安慰剂治疗的小鼠确实发生了心律失常。利用AAV-CRISPR对RYR2基因的缺陷性拷贝进行编辑会极大地降低存在功能障碍的RYR2蛋白的丰度。此外,仍然存在的RYR2基因的单个健康拷贝足以支持适当的心脏功能。在正常或携带这种突变的小鼠组中未观察到与治疗相关的不良事件。 6.Nat Med:人类机体真的对CRISPR-Cas9基因编辑工具存在免疫力吗? doi:10.1038/s41591-018-0204-6 如今CRISPR-Cas9基因编辑系统在基因治疗领域产生了激动人心的成果,这就激发了科学家们利用该工具治疗人类遗传性疾病的新希望,近日,一项刊登在国际杂志Nature Medicine上的研究报告中,来自德国的科学家们通过研究人类机体对CRISPR-Cas9的免疫反应,结果发现,人类机体能对Cas9蛋白产生较为广泛的免疫力,如今研究人员正在开发多种创新性策略来确保CRISPR-Cas9基因编辑系统能在一系列临床应用中安全使用。 目前并没有足够的证据来评估该技术在人类机体中使用所带来的潜在风险和益处,通过研究人类机体对CRISPR-Cas9系统的免疫反应,研究人员或许就能成功填补这一研究领域的空白;研究者Schmuck-Henneresse说道,Cas9蛋白来源于链球菌属,其组成了CRISPR-Cas9系统的关键部分,链球菌的感染在人类机体中非常常见,因此研究人员推测,是否人类机体会对Cas9蛋白预先存在免疫记忆。 研究者在几乎所有的健康人类受试对象中都能发现其机体中T细胞会对Cas蛋白产生反应,Cas分子源于其它细菌,比如链球菌和胃肠道细菌等,其能够产生特殊类型的免疫反应,这一现象的产生或是由于酶类之间相似性较高所致;在基因疗法治疗期间,这些免疫细胞能够产生一些不好的免疫反应,从而潜在影响CRISPR-Cas9基因编辑技术的安全性和有效性,当然了,CRISPR-Cas9技术或许也存在一定风险,这是研究人员需要提前想好的。 研究者表示,这意味着在体内被遗传修饰的细胞并不应该被输入到CRISPR-Cas9系统依然保持活性的患者机体中,如今研究者开发了一种检测技术来确保细胞产物能够被安全使用,其能够可靠地确定患者机体的免疫反应风险是否处于较低的水平;然而,某些遗传性疾病会产生一些组织缺陷,这些缺陷在人类体外都无法被修饰,因此研究人员就需要寻找新型的解决手段来抑制机体对CRISPR-Cas9基因编辑工具所产生的危险免疫反应。 7. Methods Mol Biol:利用CRISPR/Cas9构建视网膜变性模型 doi:10.1007/978-1-4939-8669-9_14 加拿大哥伦比亚大学眼科学与视觉科学系的Feehan JM等人近日在Methods Mol Biol杂志上发表了一篇文章,他们利用CRISPR / Cas9基因编辑技术构建了视网膜变性的动物模型。 之前的研究已证明非洲爪蟾(Xenopus laevis)是可以用于快速构建和分析人视网膜疾病转基因模型的有效系统。然而,该系统缺乏稳健的基因插入和敲除的试验技术,因此受到一定的限制。在这里,他们通过使用Cas9基因编辑技术,构建了X.laevis胚胎,并对这个方案进行了详细的描述。 他们使用该技术将点突变引入X.laevis的基因组中,使阅读框内和框外产生插入和缺失。构建的动物模型允许对人类显性和隐性遗传疾病进行建模,并可以有效地产生基因敲低和敲除的效果。