《苏州纳米所印刷电子中心苏文明研究团队印刷QLED显示混合HTL材料取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-03-24
  • . 喷墨印刷制程具有材料利用率高、制备工艺简单,可大面积规模化低成本生产等优势而备受显示面板行业关注,目前印刷显示已进入产业化研发阶段。其中以量子点纳米晶为发光中心的 QLED 不仅有 非常高的发光效率,且具有非常窄的电致发光 (EL) 光谱,因而有比 OLED 更好的色纯度及广色域;同时其对环境水氧敏感度也相对较低,用于柔性显示对薄膜封装的要求更低,是一种非常有竞争力的新型前沿显示技术。 技术的迭代需要新生技术有足够的竞争力,印刷 QLED 显示 走向产业,首先其 印刷器件的 发光效率与寿命得能与 OLED 技术媲美。尽管量子点材料及旋涂器件 技术 已日 趋 成熟,性能指标已可满足实用需求,但印刷制程的器件性能目前离旋涂器件还有 较 大差距。当前高性能的 镉基 QLED 器件 HTL 通常是 TFB ,这是由于它有非常高的空穴迁移率,使得器件中的电子空穴更加平衡从而保障了高的电流效率,驱动电压较低保障了较长的器件寿命,但 TFB 用于印刷显示也存在系列问题:一、 作为聚合 物 存在批次间分子量不同, 易 引起材料的迁移率或成膜状态变化,器件电流效率波动高达 50% 以上 ,严重影响产品配色 ;二、 TFB 是非交连材料,量子点墨水只能选用正交溶剂,加大了 量子点 墨水配方开发难度,打印成膜质量 易 受影响;三、 3 TFB 膜层的表面能低至 34mN/m ,不利于量子点墨水铺展, 不易 打印 出 高质量 的发光层 ,显示屏易出现 mura 现象 ;四、 TFB 与 QD 界面势垒 较大, TFB 的热稳定性较差可能 影响 器件 寿命。 在前期研究工作中, 中国科学院苏州纳米所印刷电子技术研究中心苏文明研究团队 针对 印刷 QLED 层间侵蚀问题、特别是 HTL/QD 界面问题开发了 深 HOMO 能级的交连型空穴传输材料,设计合成了具有平面型分子结构、 HOMO 能级高达 6.2 eV 、迁移率 远 优于 PVK 的 CBP-V 分子 ,交连后具有高的抗溶剂侵蚀能力,同时薄膜厚度相比于交连前收缩了 22% ,大幅提高了薄膜致密性,进一步提高了薄膜迁移率和降低器件漏电流,并最终实现了双层喷墨打印的红光 QLED 器件,最大 EQE 达 11.6% , 为 对比旋涂器件性能( 12.6% )的 92% ( Small , 2019, 15,1900111 )。但由于 CBP-V 深的 HOMO 能级,虽解决了 HTL/QD 界面势垒,但带来了 ITO /HTL 界面空穴注入问题,另一方面, CBP-V 的迁移率还是远低于 TFB 的,导致器件驱动电压过高,器件的寿命改善有限。

    最近,该团队的博士生唐鹏宇和研究实习员谢黎明将 CBP-V 与 TFB 进行混合,用于 QLED 器件研究。结果表明,一定比例混合的膜层展示了接近于 TFB 的高迁移率,且具有交连材料的抗溶剂性,同时大幅降低了 ITO /HTL 及 HTL/QD 的空穴注入势垒和界面氧化电位,使得空穴能够更高效地注入到量子点层中,器件中的电子与空穴更加平衡,大幅提高了器件的效率和寿命。

    以上研究成果以 Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer 为题发表在 ACS Applied Materials & Interfaces ( 2020,DOI: 10.1021/acsami.0c01001) 上。唐鹏宇与谢黎明为本论文的共同第一作者,中国科学院苏州纳米所的苏文明研究员及广东聚华印刷显示技术有限公司的庄锦勇博士为本论文的共同通讯作者。该研究得到了 国家自然科学基金重点项目( U1605244),国家重点研 发 计划( 2016YFB0401600)等项目的资助。 还得到了国家印刷及柔性显示创新中心 --- 广东聚华印刷显示技术有限公司技术支持与经费资助。

相关报告
  • 《苏州纳米所印刷电子团队在高稳定性织物柔性发光显示方向取得研究进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-02
    •   柔性织物可穿戴电子电路系统是未来人体健康监测的重要基础平台,在疏松多毛、多孔洞、高弹性、易形变服装织物上,不以牺牲元器件的光电性能及面料的质轻、柔软、透气等特性为代价,集成高柔韧度、高机械可靠性的导线及光电学元器件仍是当前面临的行业共性技术难题。   在织物面料表面构建电子器件与电路面临如下诸多挑战:第一,如何克服多孔粗糙表面,实现高导电、高精度、耐拉伸电极电路的制备?第二,如何在保证电学功能的前提下最大限度保留织物轻柔透气特性?第三,如何实现电路电子元器件具有与织物共形变的柔韧可拉伸特性,从而实现可水洗、耐揉搓等高耐久性?   针对上述挑战,中国科学院苏州纳米所印刷电子团队近年来在织物基柔性可穿戴电子器件方面取得了一系列进展,发展了基于银纳米线(AgNWs)和金属网格(Metal Mesh)的透明导电薄膜,成功应用于织物基可拉伸光电器件(ACS Appl. Mater. Interfaces 2020, 12, 24074-24085; Adv. Electron. Mater. 2021, 2100611; Flex. Print. Electron. 2022, 7, 034002),并在印刷织物电路及器件方面做了大量工作(J. Mater. Chem. C, 2020, 8, 16798-16807; ACS Appl. Electron. Mater. 2021, 3, 1747-1757; Nano Res. 2022, 15,4590-4598),另外在织物基智能系统方面也进行了系列研究(ACS Appl. Mater. Interfaces 2022, 14, 29144-29155; Nano Res. 2022, DOI: 10.1007/s12274-022-5077-9.)   近日,针对印刷墨水中有机溶剂对织物造成破坏和残留问题,中国科学院苏州纳米所印刷电子团队袁伟副研究员等借鉴传统烫印技术,利用激光刻蚀结合热转印开发了一种全固态、可图案化、普适性的织物基交流电致发光器件(ACEL)制备方法。制备的织物发光器件具有优异的机械和耐洗涤性能,器件界面剥离强度高达700N/m,按照标准洗涤流程机洗5次后器件发光均匀性不受影响,亮度仅降低9.7%,在针刺和裁切等物理损伤下仍然保持正常的发光功能。此外,研究者还展示了蓝、绿、黄等多种彩色图案,并且演示了利用家用工具在织物上DIY发光logo的制备流程。最后,将制备的发光器件集成到服装上,实现了动态像素化数字演示。这种普适的织物发光器件加工技术的开发将进一步促进未来可穿戴显示器件的应用。  在织物上制备ACEL器件的工艺流程如图1(a)所示。从底电极、发光层到透明顶电极,都预先结合激光雕刻技术制备好,具体步骤如下:第一步,在离型膜表面分别刮涂复合导电层和热熔胶层,利用激光雕刻技术进行图案化处理,热转印到织物表面,标记为1号和2号电极,其中1号电极与底电极相连,2号电极与随后的透明顶电极相连;第二步,在离型膜表面刮涂发光层,利用激光雕刻技术进行图案化处理,随后热压在底电极上;第三步,同样利用激光雕刻技术对透明顶电极进行图案化处理,随后热压在发光层上,透明顶电极覆盖整个发光层并与2号电极相连。该器件的工作原理是形成一个电容器结构,上下两层为电极,中间为发光层,顶部的透明电极可允许光输出。如图1(d)所示制备的器件在模拟水洗状态下,依旧具有出色的机械性能。   本研究工作的重要亮点之一是引入了蛇形可拉伸金属网格透明电极,该电极在550 nm处其透过率为77.16%,同时方阻低至134.4 mΩ/sq,仅为ITO电极方阻的0.5%。此外,该电极在拉伸100%时电阻变化仅为~10%,在经过长达8000次的弯折循环测试和50次的粘附力测试后,电极的阻抗几乎不变。数据表明制备的透明金属网格电极具有优异的机械稳定性,是织物发光显示器件实现高稳定性的关键。   研究还对制备的弹性可拉伸TPU成分与发光及介质材料配比进行了系统评估,结合发光层的力学性能和发光器件的静态数据,得出最优的发光层为TPU:ZnS/Cu:BaTiO3三者的质量比为8:20:4,基于此比例,还系统研究了驱动电压和频率对器件发光亮度和颜色的关系。   研究者对器件的发光性能进行了系统全面的表征,包括机械耐久性、高温高湿环境下的稳定性、耐水洗性以及物理损坏,如图4所示,器件在各种拉伸条件下仍保持着稳定的性能;研究还展示了该织物蓝、绿、黄多色发光LOGO器件及其自由可裁剪及抗针刺能力,并实现了织物面料上芯片驱动的智能动态化数字动态显示。该研究成果证明了在织物面料表面构建高机械稳定性和环境适应能力的发光显示器件与电路结构的可行性,为未来柔性织物可穿戴电子系统的发光显示部件提供了一种新的解决方案。   相关工作以Thermally Laminated Lighting Textile for Wearable Displays with High Durability为题发表在ACS Applied Materials & Interfaces上。中国科学院苏州纳米所硕士研究生林勇(已毕业,现为南京大学在读博士生)和博士后陈小连为文章共同第一作者,通讯作者为袁伟副研究员和苏文明研究员;本工作还得到了南京大学现代工程与应用科学学院孔德圣教授团队的大力帮助。
  • 《我国印刷金属网格透明导电膜获新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-06-10
    • 透明导电膜在高透光下同时具有导电性,是光电领域中不可或缺的重要工业基础材料。随着光电子器件逐渐向大尺寸、轻薄、柔性、低成本方向发展,对高性能的柔性及可拉伸透明导电膜的需求增长迅速。 当前广泛使用的透明导电材料主要为ITO膜或玻璃,但因方阻较高、脆性结构限制了其在柔性光电器件上的使用;而新发展的基于导电聚合物、碳材料和金属纳米材料的柔性透明导电膜,普遍存在导电性和透过率相互制约的问题,在85%以上的透过率下方阻通常在数十欧每方块以上。 金属网格透明导电薄膜(来源:崔铮团队) 基于铜箔黄光制程蚀刻的金属网格透明导电膜具有高导高透的优点受到了行业广泛关注,但工艺复杂,酸蚀刻工艺与铜离子造成的污染及其高成本也不容忽视。中国科学院苏州纳米所崔铮研究员领导的印刷电子研究团队自主研发了印刷增材制造的嵌入式银网格透明导电膜,透过率和导电性可以独立调节,在85%以上透过率下方阻低于10Ω/□,已成功应用在触摸屏上并实现了产业化,曾荣获2014年中国专利金奖。 为进一步推广印刷金属网格透明导电膜在透明导磁屏蔽、电加热膜、透明5G天线等更广领域的应用,如何进一步在高透过率下大幅度提升导电膜的导电性能成为团队的重要研究目标。 近日,中国科学院苏州纳米所印刷电子中心苏文明研究团队基于混合式印刷增材制造技术,优化压印模具结构参数,实现了2:1深宽比和4μm线宽的凹槽结构,再结合刮填薄层纳米银油墨的种子层,用电筹沉铜技术在凹槽中填满致密的铜。由于电沉积过程金属铜完全限制在凹槽中只能单向生长,避免了扩线,从而获得高深宽比的铜网格,因而在不影响光透过率的情况下增加了金属网格的厚度,同时电镀的网格具有铜本征的高电导率,最终在86%的高透光率下,方块电阻低至0.03 Ω/□,FOM值超过80000(FOM是透明导电膜的综合质量因素,指光透过与方阻的比值,如ITO的FOM<300)。 铜网格透明导电膜的制备流程示意图和光学图片(来源:崔铮团队) 说起崔铮教授,从事印刷电子研究的应该都很熟悉。 崔铮教授本、硕、博均毕业于东南大学,1989年9月受英国科学与工程研究委员会访问研究基金资助 (SERC Visiting Fellowship),到英国剑桥大学微电子研究中心做访问研究员(Visiting Fellow)。1993年受聘到英国卢瑟福国家实验室微结构中心做高级研究员 (Senior scientist)。自1999年以来任该中心微纳米技术首席科学家 (Principal Scientist),并任卢瑟福国家实验室微系统技术中心负责人 (Microsystem Technology Centre),至2009年9月前在卢瑟福国家实验室微纳米技术中心(MNTC)负责微纳米技术的工程应用 (Group Leader)。 2009年10月加盟中国科学院苏州纳米所(全职),创建国内首个印刷电子研究中心。该中心目前已有科研团队成员70余人,建成实验室面积2000余平米。开展了从印刷电子墨水合成,到工艺与装备研究,印刷光伏、印刷薄膜晶体管、印刷有机与量子点发光、印刷柔性可拉伸电子等多领域研发。