Modeling shield immunity to reduce COVID-19 epidemic spread
Joshua S. Weitz, Stephen J. Beckett, Ashley R. Coenen, David Demory, Marian Dominguez-Mirazo, Jonathan Dushoff, Chung-Yin Leung, Guanlin Li, Andreea M?g?lie, Sang Woo Park, Rogelio Rodriguez-Gonzalez, Shashwat Shivam & Conan Y. Zhao
Nature Medicine (2020)
Abstract
The COVID-19 pandemic has precipitated a global crisis, with more than 1,430,000 confirmed cases and more than 85,000 confirmed deaths globally as of 9 April 20201,2,3,4. Mitigation and suppression of new infections have emerged as the two predominant public health control strategies5. Both strategies focus on reducing new infections by limiting human-to-human interactions, which could be both socially and economically unsustainable in the long term. We have developed and analyzed an epidemiological intervention model that leverages serological tests6,7 to identify and deploy recovered individuals8 as focal points for sustaining safer interactions via interaction substitution, developing what we term ‘shield immunity’ at the population scale. The objective of a shield immunity strategy is to help to sustain the interactions necessary for the functioning of essential goods and services9 while reducing the probability of transmission.