《宁波材料所在热电材料综合性能优化方面取得系列进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-04-03
  • 热电转换技术利用半导体内部的载流子输运能够实现热能和电能之间的直接相互转换。热电器件具有体积小、无移动部件、无噪音、可靠性高和使用寿命长等优点,在特殊电源、余热发电、以及便携精密制冷等领域具有广泛而重要的应用。围绕碲化铋等层状结构热电材料以及新型IV-VI族化合物,中国科学院宁波材料技术与工程研究所光电功能材料与器件团队通过理论与实验紧密结合,在综合性能优化方面开展了一系列具有特色和成效的研究工作。

    研究团队在碲化铋中添加硬度较高的Ge0.5Mn0.5Te,并通过区熔和热压两种工艺相结合,所获得的复合材料兼具良好的力学性能和热电性能,从而使其更有利于微型热电器件应用(J. Mater. Chem. A 2019, 7: 9241)。在层状Mg基Zintl相热电材料方面,研究团队首先从理论角度阐述了这类材料的共性局域成建特征和多能谷调控机理(J. Mater. Chem. A 2019, 7: 8922),并与美国休斯顿大学任志锋教授团队合作实现了SmMg2Bi2高熵热电材料的性能优化(J. Mater. Chem. A 2020, doi: 10.1039/c9ta13224d)。在新型IV-VI族化合物方面,研究团队系统阐述了掺杂阳离子轨道能级和结构因子对轻重价带的协同调控,与日本国立材料研究所Mori教授团队合作实现了GeTe热电优值的显著提升(Mater. Today Phys. 2019, 9, 100094)。

    最近,针对具有层状结构的SnSe热电材料,该研究团队制备了PbBr2掺杂SnSe0.95单晶,并结合测试表征和第一性原理计算,揭示了晶格常数增大引起的费米面演变对热电性能的调控规律。实验研究发现,随着PbBr2的含量增加,晶格常数a逐渐增大,材料电输运性能显著提升;当PbBr2浓度达到3%时,载流子迁移率和电导率却急剧降低。费米面动力学研究表明,随着晶格常数a增大,导带低费米面逐渐变小,电子云交叠也随之减小,当电子云交叠减小到一定程度就会导致迁移率骤降;另一方面Γ点费米面逐渐增大,增强的谷间散射也导致迁移率降低。为论证费米面动力学调控机制,研究人员基于3%PbBr2掺杂样品进一步设计了Ge掺杂实验,表明适当缩小晶格常数a可以提高载流子迁移率,并将最优化ZT值由0.6提升至1.7。该工作以“Fermi-surface dynamics and high thermoelectric performance along the out-of-plane direction in n-type SnSe crystals”为题发表在Energy Environ. Sci. 2020, 13: 616。

    该系列研究得到了国家自然科学基金(51872301,21875273和51702334)、浙江省相关人才计划(LR16E020001)、浙江省自然科学基金(LY18A040008和LY18E020017)和中国科学院青年创新促进会(2018337和2019298)等项目的支持。

    图 PbBr2掺杂SnSe0.95费米面动力学及热电性能优化

相关报告
  • 《宁波材料所在热电材料综合性能优化方面取得系列进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-02
    • 热电转换技术利用半导体内部的载流子输运能够实现热能和电能之间的直接相互转换。热电器件具有体积小、无移动部件、无噪音、可靠性高和使用寿命长等优点,在特殊电源、余热发电、以及便携精密制冷等领域具有广泛而重要的应用。围绕碲化铋等层状结构热电材料以及新型IV-VI族化合物,中国科学院宁波材料技术与工程研究所光电功能材料与器件团队通过理论与实验紧密结合,在综合性能优化方面开展了一系列具有特色和成效的研究工作。   研究团队在碲化铋中添加硬度较高的Ge 0.5 Mn 0.5 Te,并通过区熔和热压两种工艺相结合,所获得的复合材料兼具良好的力学性能和热电性能,从而使其更有利于微型热电器件应用( J. Mater. Chem. A 2019, 7: 9241)。在层状Mg基Zintl相热电材料方面,研究团队首先从理论角度阐述了这类材料的共性局域成建特征和多能谷调控机理( J. Mater. Chem. A 2019, 7: 8922),并与美国休斯顿大学任志锋教授团队合作实现了SmMg 2 Bi 2 高熵热电材料的性能优化( J. Mater. Chem. A 2020, doi: 10.1039/c9ta13224d)。在新型IV-VI族化合物方面,研究团队系统阐述了掺杂阳离子轨道能级和结构因子对轻重价带的协同调控,与日本国立材料研究所Mori教授团队合作实现了GeTe热电优值的显著提升( Mater. Today Phys. 2019, 9, 100094)。   最近,针对具有层状结构的SnSe热电材料,该研究团队制备了PbBr 2 掺杂SnSe 0.95 单晶,并结合测试表征和第一性原理计算,揭示了晶格常数增大引起的费米面演变对热电性能的调控规律。实验研究发现,随着PbBr 2 的含量增加,晶格常数a逐渐增大,材料电输运性能显著提升;当PbBr 2 浓度达到3%时,载流子迁移率和电导率却急剧降低。费米面动力学研究表明,随着晶格常数a增大,导带低费米面逐渐变小,电子云交叠也随之减小,当电子云交叠减小到一定程度就会导致迁移率骤降;另一方面Γ点费米面逐渐增大,增强的谷间散射也导致迁移率降低。为论证费米面动力学调控机制,研究人员基于3%PbBr 2 掺杂样品进一步设计了Ge掺杂实验,表明适当缩小晶格常数a可以提高载流子迁移率,并将最优化ZT值由0.6提升至1.7。该工作以“Fermi-surface dynamics and high thermoelectric performance along the out-of-plane direction in n-type SnSe crystals”为题发表在 Energy Environ. Sci. 2020, 13: 616。   该系列研究得到了国家自然科学基金(51872301,21875273和51702334)、浙江省相关人才计划(LR16E020001)、浙江省自然科学基金(LY18A040008和LY18E020017)和中国科学院青年创新促进会(2018337和2019298)等项目的支持。
  • 《宁波材料所热电材料能带工程和性能优化方面取得系列进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-07-25
    • 热电材料是一类能够实现热电与电能直接相互转换的功能材料,可用于半导体制冷、高精度温控和温差发电。为提升热电转换效率,需要在保持较低热导率的基础上尽可能提高材料的功率因子S2σ。然而Seebeck系数S和电导率σ之间具有本征关联性,通常难以实现功率因子的大幅度提升。利用“能带工程”能够在一定程度上实现S和σ的解耦合,以获得较高的功率因子和转换效率。围绕几类环境友好的新型热电材料,中国科学院宁波材料所光电功能材料与器件团队通过理论与实验紧密结合,在能带工程和性能优化方面开展了一系列有特色和成效的研究工作。   该团队研究人员以近室温区新型热电材料α-MgAgSb为例,通过理论先行开展能带工程设计,并有力推动了相关实验研究进展。由基础电子结构理论可知,共价键结合的半导体中带隙多来自于成键态与反键态的分裂,其价带或导带具有典型的成键态或反键态特征。研究人员通过探索“掺杂元素能级—成键/反键态强度—能带色散”之间的内在关联,为α-MgAgSb多能谷简并设计了多种掺杂方案。这种能带工程设计思路极具操作性,不仅适用于α-MgAgSb,也可为其它热电材料能带调控提供理论指导。该研究工作发表在Adv. Energy Mater. 2017, 1700076。    图1. α-MgAgSb中能带工程示意图   SnTe有望替代PbTe,成为一类环境友好型中温区热电材料。在前期工作中,该团队已通过“价带简并”和“共振能级”两种能带工程机理实现其热电性能优化。他们最近研究发现,SnTe中共振态能级位置和轻/重价带能量差具有良好的匹配性,这预示上述两种机理可在SnTe中协同作用,实现较大温区内热电性能的全面提升。研究人员进一步指出,实现两种机理协同作用的共掺方案是较低浓度的In和适量的Mg、Mn或Cd等元素。实验研究证实了这些理论预测,相关研究工作发表在ACS Energy Lett. 2017, 2: 1203和J. Mater. Chem. C 2017, doi: 10.1039/C7TC02162C,等。   图2. In&Mn共掺SnTe能带工程示意图及实验结果   SnSe是近年来被报道的高性能中温区热电材料,然而其机械性能较差。该团队研究人员自主开发了“水平梯度凝固法”,获得了高质量大尺寸SnSe单晶,相关工作发表在J. Cryst. Growth 2017, 460: 112和J. Alloys Compd. 2017, 712: 857。研究人员同时还制备了SnSe多晶,以克服单晶生长条件苛刻、制备周期较长等缺点,并通过掺杂设计来改善其热电性能。例如PbBr2掺杂获得性能优异的n型SnSe多晶,Ag掺杂获得性能优异的p型SnSe多晶。相关研究工作发表在RSC Adv. 2017, 7: 17906和NPG Asia Mater. 2017,等。   图3. Ag掺杂SnSe织构化多晶的迁移率和ZT值   以上工作获得了国家自然科学基金(11234012,11404350,11404348)、浙江省相关人才计划(LR16E020001)和宁波市科技创新团队(2014B82004)等项目支持。