《工信部印发《工业企业和园区数字化能碳管理中心建设指南》》

  • 来源专题:智能制造
  • 编译者: icad
  • 发布时间:2025-04-08
  • 工信厅节〔2025〕13号

          各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门:

          为加强工业节能降碳管理,支撑构建系统完备的碳排放双控制度体系,工业和信息化部组织编制了《工业企业和园区数字化能碳管理中心建设指南》,现印发给你们。请结合实际组织实施,强化宣传解读,因地制宜指导工业企业、工业园区开展数字化能碳管理中心建设运行,提升碳管理水平,加快绿色低碳转型。

    工业和信息化部办公厅

    2025年3月7日

    工业企业和园区数字化能碳管理中心建设指南

          数字化能碳管理中心是支撑工业企业和园区提升能耗双控和碳排放双控管理水平的信息系统和基础工具,通过采用人工智能、工业互联网和物联网、智能传感等信息通信技术,开发能耗和碳排放数据采集、监测、核算、分析、预测、预警、决策支持等功能,支撑开展产品碳足迹、项目碳评价和企业碳管理。为指导工业企业和园区建设数字化能碳管理中心,推进数字技术赋能绿色低碳转型,提升工业节能降碳水平,制定本指南。

          一、建设目标

          工业企业和园区通过数字化能碳管理中心建设运行,实现对能耗和碳排放的精准化计量、精细化管控、智能化决策与可视化呈现,持续提升节能降碳管理能力,有效支撑能源利用效率提升和碳排放降低,促进绿色低碳转型。

          二、业务功能

          能碳管理中心具备能耗查询、能源消费量和强度计算、能源消费分析与用能策略推荐、能效对标、能流分析、能效平衡与优化、用能与碳排放预算管理、碳排放、碳足迹核算、供应链碳管理、碳核查支撑、碳资产管理等功能。业务功能及技术方案的开发应用需依据节能降碳相关标准政策要求,具体标准可在“全国标准信息公共服务平台”查询。

          能耗查询。实现对煤炭、焦炭、原油、汽油、煤油、柴油、燃料油、天然气、电力(包括火电、水电、光伏发电、风力发电、生物质发电、余热余压发电等)、热力,原料用能,以及用作燃料的甲醇、乙醇、氢、氨等能源消费数据的实时更新、查询、历史数据追溯等。

          能源消费量和强度计算。依据《综合能耗计算通则》(GB/T 2589)等国家标准,计算一个时间周期内,工业企业和园区的能源消费量,单位产品综合能耗、单位产值/增加值综合能耗等。

          能源消费分析与用能策略推荐。结合实际需求,对用能单元在一个时间周期内的用能结构、成本、能效等进行计算和分析。根据分析结果,提出优化用能配置、清洁能源使用等推荐策略。

          能效对标。对各用能单元、各生产时段内的能源消费情况进行监测,开展主要工序、重点产品和设备等的能效对标。结合节能目标责任评价考核等要求,支撑开展节能管理。

          能流分析。通过绘制桑基图能源平衡表等,对能源输入、转换、分配、利用等全过程进行计算,对能流、能效与损失等进行分析,实现对能源流动全貌的查看、重点能耗环节的识别等。

          能效平衡与优化。运用大数据、人工智能大模型等技术,结合能效对标、能流分析等,优化工艺、设备等运行参数,实现能源综合平衡与优化调度。

          用能与碳排放预算管理。对一个时间周期内工业企业和园区的能源消费和碳排放进行分析预测,实现用能和碳排放的全流程管理和动态调整。

          碳排放核算。依据重点行业企业碳排放核算规则标准,计算一个时间周期内,工业企业和园区的碳排放总量和强度,实现碳排放来源追踪、碳排放趋势分析、超排放预警等功能。

          产品碳足迹核算。从产品原材料获取、生产、运输、销售、使用和回收处理等环节采集数据信息,结合绿电绿证交易情况,实现产品碳足迹在线核算、碳足迹报告生成、支撑产品碳标识认证等功能。

          供应链碳管理。面向上游供应商,依据供应链场地数据采集标准和规则,采集材料用量、能源消费等数据。面向下游用户,结合应用场景的实际需求,提供产品碳足迹核算过程、结果等。

          碳核查支撑。支持碳排放核算的过程数据和原始凭证追踪和溯源,实现碳排放报告在线自动生成,完成碳核查相关材料汇集和导出。

          碳资产管理。实现对各类碳资产(如碳配额、国家核证温室气体自愿减排交易等)的分析展示,支持对某一履约周期的碳配额录入,对新一个履约周期的碳配额测算等,对配额指标使用情况开展预测预警。

          三、技术方案

          (一)系统架构

          根据信息系统建设国家标准、行业标准及相关要求,设计工业企业和园区数字化能碳管理中心系统架构。包括基础设施层、数据采集层、数据架构层、模型组件层、业务应用层、互动展示层六大板块。

          (二)基础设施

          能碳管理中心运行环境包括服务器、存储、网络、安全设备及操作系统、数据库等。运行环境应稳定安全,确保能碳管理中心响应迅速,兼具易用、可维护、可扩展及稳定特性。应构建全面的系统安全协防体系,保障网络、系统及数据安全。

          (三)数据采集

          能碳管理中心可通过现有系统数据对接、仪表采集、手工填报和烟感实测等采集方式完成能源消费、生产经营等关键数据的采集和上传。加强能源和碳排放计量器具配备和检定校准。提高物联网智能传感器、智能仪表覆盖率,提升数据自采率。制定数据审核机制,采取区块链等存证技术,提升数据质量和安全防护。

          系统对接。通过接口方式,从管理信息系统、生产监控管理系统、生产过程控制系统、源网荷储及工业微电网系统等调用相关数据。

          仪表采集。部署智能电表、智能燃气表、热力仪表、称重传感器等采集装置,通过有线或无线通信网络上传相关数据。

          手工填报。无法自动采集时,可开发填报界面,根据应用需求,填报主要能源数据与关键生产数据。

          烟感实测。针对碳集中排放场景,探索在线监测等实测方式采集碳排放数据。

          (四)数据架构

          发挥工业互联网标识解析体系贯通产业链上下游企业、促进数据互通和信息共享的作用,通过工业企业和园区生产管控、管理信息以及工业互联网平台等既有系统和数据平台,以及构建基础数据库、采集数据库、业务数据库、统计数据库等方式,确保各类数据的安全性、准确性和高效利用。

          鼓励工业企业和园区根据实际需求,以国际国内相关权威碳排放因子为基础,不断积累聚集本土碳排放因子数据,逐步构建碳排放因子数据库,加强与国家温室气体排放因子数据库衔接。

          (五)模型组件

          加强能效对标、企业碳排放核算、产品碳足迹核算、园区碳排放核算等算法模型与国家标准、行业标准及相关要求的衔接统一。鼓励工业企业和园区依据业务需求开发模型组件。

          能效对标模型。实现对主要产品、设备的能效对标。模型设计应对照国家现行单位产品能耗限额标准、设备能效标准,以及《工业重点领域能效标杆水平和基准水平》《重点用能产品设备能效先进水平、节能水平和准入水平》等要求。

          企业碳排放核算模型。实现对工业企业碳排放量进行核算与分析。模型设计应根据应用场景,符合温室气体排放核算与报告要求(GB/T32151)系列国家标准、生态环境部《企业温室气体排放核算与报告指南》和相关行业碳排放核算国家标准、行业标准等要求。

          产品碳足迹核算模型。实现对产品碳足迹进行核算与分析。模型设计应符合相关国际规范,符合《温室气体 产品碳足迹 量化要求和指南》(GB/T 24067)及对应细分产品碳足迹核算规则标准。

          园区碳排放核算模型。实现对园区碳排放量进行核算与分析。模型设计可参考《省级温室气体清单编制指南(试行)》等,并根据相关要求迭代更新。

          (六)业务应用

          工业企业的业务功能包括能耗查询、能源消费总量和强度计算、能源消费分析与用能策略推荐、能效对标、能流分析、能效平衡与优化、用能与碳排放预算管理、碳排放核算、碳足迹核算、供应链碳管理、碳核查支撑、碳资产管理等。工业园区的业务功能包括为入驻企业提供能源消费、碳排放管理等上述相关功能,提供园区内能源利用系统性优化等公共服务。

          (七)互动展示

          根据实际需求,通过大屏、电脑端、手机端等提供访问入口,构建相关数据、业务等的可视化能力。

          四、保障措施

          (一)组织保障。工业企业和园区可根据实际需要,建立能碳管理技术队伍,由节能降碳管理负责人,具有节能、能源计量、碳核算以及软件工程、信息安全等专业知识和技术的人员组成;明确节能降碳管理职责,落实节能目标责任制和节能考核评价等相关制度,定期组织开展相关人员业务培训,提高节能降碳管理能力和水平。

          (二)制度保障。工业企业和园区应建立健全能碳管理中心运行维护管理制度,加大必要投入,有效保障能碳管理中心的高效运维和持续更新。鼓励开展资源整合,将已建设能源管理中心升级改造为能碳管理中心。积极创造条件,促进能碳管理中心与既有信息系统、工业互联网平台,以及各级能碳管理相关平台等的协调对接,实现数据共享,有效支撑节能降碳。

          (三)网络和数据安全。工业企业和园区应增强网络和数据安全保护意识,落实《信息安全技术 网络安全等级保护基本要求》(GB/T 22239)等国家标准,压实网络和数据安全主体责任。根据实际情况,对能碳管理中心设定相应的安全等级保护级别,做好重要数据识别、分级防护和风险评估,保障数据安全。

  • 原文来源:http://www.chmia.org/detail.html?id=17&contentId=3731
相关报告
  • 《工业和信息化部关于印发《工业领域电力需求侧管理工作指南》的通知》

    • 来源专题:北京市经济和信息化委员会监测服务平台
    • 编译者:zhangmin
    • 发布时间:2019-07-23
    • 工信部运行〔2019〕145号 各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化主管部门,中国电力企业联合会: 为进一步完善工业领域电力需求侧管理工作体系,指导工业企业(园区)优化用电结构、调整用电方式、优化电力资源配置,促进工业转型升级,我部制定了《工业领域电力需求侧管理工作指南》,现印发你们。请各地结合实际,认真组织实施。 工业和信息化部 2019年7月10日 (联系人及电话:朱璋 010-68205289) 工业领域电力需求侧管理工作指南 引 言 0.1 总则 党中央、国务院高度重视电力需求侧管理工作,把电力需求侧管理作为深入推进供给侧结构性改革、推动能源生产和消费革命、生态文明建设和促进电力经济绿色发展的重要举措。推进工业领域电力需求侧管理,有助于优化工业用电结构,调整用电方式,提高工业电能利用效率和效益,促进工业、电力和环境的平衡协调发展。 2015年,中共中央、国务院印发《关于进一步深化电力体制改革的若干意见》(中发〔2015〕9号),明确提出积极开展需求侧管理和能效管理,通过运用现代信息技术、培育电能服务、实施需求响应等,促进供需平衡和节能减排。 2016年,《国家能源生产和消费革命战略(2016-2030)》明确开展工业领域电力需求侧管理专项行动,制定工作指南,并形成示范经验在交通、建筑、商业领域推广。工业和信息化部印发《工业领域电力需求侧管理专项行动计划(2016-2020年)》,明确通过制定工作指南等重点任务,鼓励工业园区构建能源服务体系,建设电力需求侧管理平台,创新综合能源服务模式;引导工业企业完善电力需求侧管理制度建设,改善电能质量,加强用电设备改造和信息化建设,促进电能替代、分布式能源利用、能源清洁和循环利用,全面提升工业领域用能效率和需求响应能力。 2017年,国家发展改革委、工业和信息化部等六部委联合印发《电力需求侧管理办法(修订版)》,指出新形势下电力需求侧管理除继续做好电力电量节约,促进节能减排工作以外,还应重点做好推进电力体制改革,总结推广需求响应试点经验;实施电能替代,扩大电力消费市场;促进可再生能源电力的有效消纳利用,推进能源绿色转型与温室气体减排;提高智能用电水平等工作。 生态文明建设、能源消费革命、新一轮电力体制改革的推进,都为电力需求侧管理提供了新的发展机遇,也提出了新的工作要求。为保障工业领域电力需求侧管理工作有序开展,系统指导各地工业和信息化主管部门、工业领域用能单位和电能服务机构通过电力需求侧管理提高能源管理水平、优化资源配置,制定本指南。 0.2 指南说明 本指南基于策划-实施-检查-改进的(PDCA)持续改进模式(如图1所示),使电力需求侧管理工作融入工业领域用能单位和电能服务机构的日常活动。 工业领域电力需求侧管理过程中PDCA方法总结如下: 策划:实施全面诊断,明确信息化和制度化要求,制定电能管理目标、指标和实施方案,确保相关工作有序开展并达到相应绩效。 实施:执行工业领域电力需求侧实施方案,开展全面治理,保障用电可靠性、实施节约用电、需求响应、绿色用电、环保用电、智能用电等。 检查:采用自评价、第三方评价等方式,评价工业领域电力需求侧管理工作开展情况,对配用电系统的关键特性和过程进行监测,对照目标指标评价确定实施绩效,并报告结果。 改进:采取措施持续改进工业领域电力需求侧管理体系。 图1 工业领域电力需求侧管理系统化运行模式 在本指南中使用如下助词: —“应”表示要求; —“宜”表示建议; —“可”表示允许; —“能”表示可能或能够; “注”的内容是理解和对有关要求的说明。 1 范围 本指南旨在建立健全工业领域电力需求侧管理工作规范,指导用能单位开展电力需求侧管理工作,加强电能管理,调整用能结构,提高终端用电效率,优化资源配置,持续提高单位工业增加值能效,实现节约、环保、绿色、智能、有序用电。 本指南可应用于工业领域各类用能单位,包括工业企业、工业园区,以及与工业相关的商业、管理、服务等组织、用电设施及公共建筑可参考使用。 用能单位可根据自身特点和控制要求,选择应用本指南全部条款或部分条款,并以成文形式界定说明。 2 规范性引用文件 下列文件对于本指南的应用是必不可少的。凡是标注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改版本)适用于本文件。 GB/T 1.1 标准化工作导则 第1部分:标准的结构和编写 GB/T 20001.7 标准编写规则 第7部分:指南标准 GB/T 6988.1 电气技术用文件的编制 第1部分:规则 GB/T 32672电力需求响应系统通用技术规范 GB/T 31960电力能效监测系统技术规范 GB/T 32127需求响应效果监测与综合效益评价导则 GB/T 15587 工业企业能源管理导则 GB/T 23331 能源管理体系 要求 GB/T 22336 企业节能标准体系编制通则 GB/T 3485 评价企业合理用电技术导则 GB/T 13234 企业节能量计算方法 GB/T 13471 节电技术经济效益计算与评价方法 GB/T 8222 用电设备电能平衡通则 GB/T 17166 企业能源审计技术通则 GB/T 19862 电能质量 电能质量监测设备通用要求 DL/T 1198 电力系统电能质量技术管理规定 DL/T 1227 电能质量监测装置技术规范 DL/T 1330 电力需求侧管理项目效果评估导则 DB11/T 1213 电力需求侧管理项目节约电力负荷计算通则 T/CEC 133 工业园区电力需求响应系统技术规范 T/CAPE 10001 设备管理体系 要求 3 术语和定义 3.1 工业领域电力需求侧管理 industrial demand side management,IDSM 指在工业领域加强用电管理,综合采取合理、可行的技术和管理措施,优化配置电力资源,调整用电结构和方式,在用电环节制止浪费、降低电耗、移峰填谷、促进可再生能源电力消费、减少污染物和温室气体排放,实现节约用电、环保用电、绿色用电、智能用电、有序用电的相关活动。 3.2 用能单位 energy user 指使用电能为主要能源的各类工业领域用能主体,包括工业企业、工业园区,以及与工业相关的商业企业、各类公共建筑。 注:除非特殊说明,本指南中的“用能单位”,根据情况可以指“工业企业”、“工业园区”、“公共建筑”或“商业主体”等各类使用电能为主要能源的单位或组织。 3.3 电能服务机构 electric energy service provider 指为用能单位提供电力需求侧管理服务的各类机构,包括节能服务机构、电力需求侧平台提供机构、售电服务机构、节能量检测评价机构等。 3.4 电力需求侧管理评价机构 power demand side management evaluation agency 指具备电力需求侧管理评价能力,提供专业评价服务的第三方机构(以下简称评价机构)。 3.5 工业领域电力需求侧管理平台 IDSM platform 指建立在工业企业或园区层面,为推进工业领域电力需求侧管理工作而开发的以电子装置和计算机网络为基础的综合性、专业化、开放式的信息管理和应用平台,实现用电(用能)在线监测、数据统计分析、用电决策支持、需求响应与有序用电、园区能源管控、建筑能耗分析、电力集中运维、能耗异常分析、用能行为分析、用能需求预测等功能,承担工业领域电力需求侧管理项目和电力需求响应执行功能,并可通过数据接口为上级平台提供相关数据信息,实现主站和子站的互通互联、信息交互和共享。 3.6 电力需求响应 power demand response,DR 指用户对价格或者激励信号做出响应,调整电力消费方式,减少(增加)用电或推移某时段的用电负荷而响应电力供应,从而促进电力供需平衡、保障系统稳定运行的过程行为,是需求侧管理(DSM)的重要技术手段。 3.7 电能替代 power substitution 是指在终端能源消费环节,使用电能替代散烧煤、燃油等化石能源的消费方式。 注:常用的电能替代方式如电采暖、热泵、工业电锅炉(窑炉)、农业电排灌及电加工、农业辅助生产、电动汽车、靠港船舶使用岸电、机场桥载设备、电蓄能调峰、轨道交通、电蓄冷空调、家庭电气化等。 3.8 电能质量 power quality 指电力系统指定点处的电特性,关系到供用电设备正常工作(或运行)的电压、电流、频率、谐波等的各种指标偏离基准技术参数的程度。 注1:引自[GB/T 32507-2016,定义2.1.1]。 注2:在理想的交流电力系统中,电能是以恒定的工业频率(50Hz)和正弦的波形,按规定的电压水平向用户供电。三相交流电力系统中各相电压和电流应该是幅值相等,相位差120°的对称状态。一些因素会使波形偏离对称正弦,由此便产生了电能质量问题。 注3:电能质量一般用频率、电压波形和三相电压的不平衡、以及电力系统频率的波动、电压的波动和闪变(波动的幅值和频率)、直流输电系统中的电压脉动、供电的连续性(年不停电时间)、公用电网的谐波和间谐波等指标来考察。 3.9 电力供需耦合 power supply demand coupling 指在能源供给侧以清洁能源为主体,在电力供给侧以高比例可再生能源发电以及较大规模的储能、储电为标志,在终端能源消费中以电能消费为主体的电力系统中,通过智能电网技术平台和市场对资源配置的决定性作用,以及更好发挥政府作用,达到电力清洁、低碳、安全、高效、经济、便捷的系统优化、平衡状态。 注:在供需耦合的能源电力系统,广泛、分散、多样化的大量可再生能源、未规模化利用的能源(如农村秸杆的集中规模化清洁利用),辅以储能技术,通过分布式供能系统与电力与集中式电力系统共同与需求侧分散式冷、热、电、气多样化需求耦合。 随着能源技术革命和体制革命推进的不断深入,电力供给侧和需求侧将在智能电网和能源互联网平台上逐步扩大供需耦合范围,需求侧管理逐步由人为调节发展到自动调节、电源与负荷侧双向调节、“源—网—荷—储”一体化智能调节。 3.10工业领域电力需求侧管理的适宜性 suitability of IDSM 是指所开展工业领域电力需求侧管理活动与用能单位实际情况相适应,符合配用电相关技术要求,且能有效覆盖各主要配用电活动过程与应用范围。 3.11工业领域电力需求侧管理的有效性 effectiveness of IDSM 简称有效性,指用能单位对工业领域电力需求侧管理工作各项策划结果的实现程度,即实现预定目标及满足相关需求侧管理规范要求的程度。 4 总则 4.1 目标 工业领域电力需求侧管理应综合用能单位、电能服务机构、电网和政府的多重诉求,通过引导用能单位自主参与和落实电力需求侧管理工作计划,实现电力供应安全、高效、绿色、可靠的政策目标,并提升用能单位的相关管理绩效。 4.2 原则 开展工业领域电力需求侧管理应站在用能单位主体视角,体现“政府引导、用能单位主导、电网配合、服务机构支撑、电力市场机制配套”的原则。 5 工作基础 5.1 制度化要求 用能单位宜结合自身特点及相关要求,制定或完善电力需求侧管理制度及工作流程,并确保有效执行。 可参照 GB/T 23331、GB/T 29456、GB/T 15587、GB/T 22336等规范性文件要求,建立完善相关制度,包括职责安排、项目管理、目标考核、运行标准、激励机制等。 5.2 信息化要求 5.2.1 总则 用能单位宜建设企业级电力需求侧管理平台、工业园区统一平台或能源管理系统,据此参与开展需求侧管理工作,包括需求响应、促进技术进步、提升用电管理水平等。 注:小规模用能单位可利用云服务技术、依托政府或相关单位既有工业领域电力需求侧管理平台,自主开展相关活动。 5.2.2 平台要求 用能单位工业领域电力需求侧管理平台建设宜符合《国家电力需求侧管理平台管理规定(试行.2014)》《电力需求侧管理平台建设技术规范(试行)》《GB/T 31960 电力能效监测系统技术规范》,以及《工业园区电力需求侧管理系统建设》等相关规范。电力需求侧管理平台应具备但不限于以下基本功能: a)电力数据采集、计量管理、数据统计分析、历史事件查询、报表管理; b)需求响应管理、平台系统监视和控制、工业领域电力需求侧管理监督考核; c)电力能效数据管理、能效对标管理、电能质量管理、电能优化管理; d)故障诊断与定位、事故预警告警、记录分析和监控管理等。 平台应提供数据接口,实现与企业内部其他相关系统的信息交互,并按照国家、地方政府或工业园区电力需求侧管理平台要求提供信息交互服务。 用能单位宜保留施工计划、工程图纸、施工质量、工程验收等平台建设资料,并对平台功能、运行监测,以及应用效果等进行控制。 5.2.3 监测及通信要求 监测点部署和监测要求应符合GB 17167,以及GB/T 31960,《国家电力需求侧管理平台管理规定(试行.2014年)》和《电力需求侧管理平台建设技术规范(试行)》等相关规范,且以满足用能单位电能管理的深度和精细度要求为准。 通信标准宜采用通用监测装置信息通讯协议,支持多种通信规约(协议)的接入,且易与其他系统或设备的接入;宜采用分层分布式系统结构,以便于维护和扩展;若负荷多且分散,可采用结构稳定的光纤自愈环网方式。 为了确保采集数据的准确性和可靠性,需要兼顾考虑计量器具的精度和校准,通信系统的单点对时和系统对时。 5.3 工作流程 用能单位开展工业领域电力需求侧管理工作流程主要分为全面诊断、综合治理和效果评价三个阶段。 a)全面诊断 用能单位自主或委托电能服务机构开展用电情况全面诊断,依据电力需求侧管理相关标准和规范要求形成诊断报告。 b)综合治理 用能单位组织完善信息化和制度化等工业领域电力需求侧管理基础工作,根据实际需求确定工业领域电力需求侧管理综合方案并有效实施,对配用电系统、设备设施、采集和计量器具及相关制度进行综合改进和优化治理。 c)效果评价 用能单位可采用自评价和/或第三方评价等方式,综合评价电力需求侧管理开展情况,核算阶段性实施效果效益,明确待改善建议项和持续改进目标,评价报告等评价结果可作为项目阶段性成效证明。 6 工作内容 6.1可靠用电 6.1.1供配电系统可靠性 用能单位宜按照GB/T 13869、GB/T 26399、DL/T 573、DL/T 1102等相关规范,加强供配电系统基础管理和技术管理,以提高配电系统的可靠性,确保安全用电。 提高供配电系统可靠性措施可包括但不限于:加强内部输配电系统设计规划、规范建设和验收标准、推广数字化建设档案交付,对重要场所及负荷采用高可靠供配电接入方案,备用电源的合理配置;淘汰落后设备、采用高效变压器等电力新产品和自身故障率较低的先进设备;加强用电负荷管理,及时根据负荷特性调整改造配用电系统;利用泛在物联网技术实时监测变配电设备、线路、开关的运行方式及电流、电压、温度、谐波、暂降、线损、负载率、无功等数据,严格运行管理和设备维护,加强供配电系统可靠性指标统计分析和故障预测等。 6.1.2用能设备设施可靠性 用能单位宜参考GB/T 23331、GB/T 19001、T/CAPE 10001等标准,以及全员设备保全(TPM)等相关规范,建立完善用能设备可靠性管理规范,并确保其贯彻执行。 提高用能设备可靠性措施可包括但不限于:完善避雷接地等用电设备工作环境、加强设备维护点检等日常管理、开展用能设备运行状态分析(如OEE)、实施设备能效评价(如电能转换效率等)、规范设备启停及低负荷运行条件,确保电力变压器系统,以及照明、空调、电热锅炉、电机拖动负荷等耗电设备经济运行,对辅助系统进行升级改造等。 注:设备综合效能(OEE)为评价设备管理水平的综合性指标,由设备开动率(A)、设备性能率(P)、以及产品一次合格率(Q)等三个指标相乘而得,是全员设备保全(TPM)和精益管理的基础指标。 6.1.3 电能质量 用能单位宜按照GB/T 12325、GB/T 12326、GB/T 14549、GB/T 15543、GB/T 15545、GB/T 15945、GB/T 18481、GB/T 19862、GB/T 30137、DL/T 1198、DL/T 1227等相关规范,对自身供配用电系统进行电能质量检测和治理。 常规的电能质量管理措施包括:评价典型电能质量干扰源、采取措施改善电能质量,提升供配电系统可靠性、提高设备运行效率、减少因配电系统异常而带来的“非计划停机”。 对电能质量的持续监测可包括:电网电压波动与闪变、电压不平衡、电流不平衡、谐波分析和越限监视、电压暂升、电压暂降与短时中断、电压瞬变、频率偏差、暂时过电压和瞬态过电压等。 使用变频器等非线性/冲击性负荷的用能单位还应采取措施对由其所引起的电能质量问题加以抑制。 6.2 节约用电 6.2.1 节电方式 用能单位宜遵循“先管理、优工艺、再改造”的顺序开展节约用电,首先强化配用电制度与现场管理,减少浪费损失、控制波动与不稳定,再寻求工艺优化、消除工序或系统间不协同等影响因素,在系统诊断的基础上,采取技术合理、经济可行的路线,实施技术改造。 6.2.2 管理节电 用能单位宜建立制度措施对配用电设备和相关人员进行科学管理,以实现电力、电量及成本节约。用能单位宜设置能源管理岗位,聘任专业电能管理人员,建立完善电力需求侧管理体系,并与相关管理系统(ERP/MES/APS/SCM等)有机融合,从能源管理转向能源价值管理,实现能源流-业务流-价值流的高效转化。以系统化管理思维,从单点转向全面、从部门转向全员的全面节能意识,持续改进电能绩效。 管理节电措施可包括:落实责任制度、建立电能标准体系,开展电能数据库建设、强化数据分析、实施电耗目标管理,优化电力计费缴费方式、采用移峰填谷、容量改需量、电平衡测试、能源审计、参与电力直接交易等。 管理节电措施宜与技术节电相配合,以实现系统化改善并巩固所取得成果。节能措施实施后宜由具有相应资质的第三方机构评估效果,出具评价报告。 6.2.3 技术节电 用能单位宜根据自身特点、配用电设备容量和工艺运行要求等,采取技术措施、通过技术进步来实现电能节约。 技术节电措施主要指通过提高电能利用效率节约用电量和电力负荷的产品(技术),包括无功补偿、谐波治理、高效装置、能效管理、余热余压利用、可再生能源等分布式发电、热泵空调等。 6.3 电力需求响应 6.3.1 负荷管理 用能单位宜根据区域变电台站负荷曲线,结合政府和电网公司的电力安全应急管理要求,制订并执行负荷控制方案,协同生产计划与能源使用,实现错峰用电、移峰填谷等。 具体可在工业领域电力需求侧管理平台支持下,加强电能电量管理,采取负荷预测、用电规划与电费预算等措施,利用峰谷电价差、可再生电能消纳等激励措施结合电力市场规则,合理配置用电负荷,节约电力电费。 6.3.2 需求响应 用能单位宜根据自身条件,建立完善内部需求响应制度及实施方案,改变用电方式、调整用电负荷,自主决策参与电力需求响应。 用能单位可在电力主管部门和电网企业的指导下,参与单边市场竞价、签订需求响应协议,按要求启动并执行需求响应。 用能单位的电力需求侧管理平台应满足GB/T 32672中对用能单位参与者的要求,接收电力需求响应项目信息,按照约定执行需求响应计划,并具有监测、记录、执行、验证等功能。 在年度工作计划结束后,用能单位按照合约获取参与需求响应的补偿或奖励费用。 注:具备条件的用能单位可参与提供辅助服务,执行辅助服务价格,获得相应收益。 6.3.3 有序用电 有序用电方案涉及的用能单位宜在电网企业或电能服务机构支持下,利用电力需求侧管理平台的负荷管理功能等技术手段,落实内部负荷控制方案,加强电能管理、合理做好日用电平衡工作,按有序用电方案要求采取相应措施,并获取相应补贴、执行可中断负荷电价或高可靠性电价等收益。 用能单位如涉及有序用电方案,其电力需求侧管理平台应满足GB/T 32672中相关要求,接入上级电力需求侧管理平台,接收有序用电指令信息,执行有序用电方案,及时反馈合理需求以减少限电损失,并具有监测、记录、执行、验证等功能。 有序用电方案涉及的用能单位应具备完善的负荷管理设施、负控装置和用户侧开关设备。 注:有序用电方案涉及的储能设备和非工业用能单位的中央空调宜具备单独控制条件。 6.4 绿色用电 6.4.1 可再生能源生产 用能单位可在其所管辖区域内合理建设分布式光伏、风电等可再生能源发电项目,所产生电力优先自发自用,余量上网。 6.4.2 可再生能源消纳 用能单位可通过调整用电计划和用电方式,或配置储能设备,参与可再生能源消纳,降低用电成本。 6.5 环保用电 6.5.1用电环保 用能单位应加强对用电用能设备的环境管理,控制“水、气、声、渣”等环境影响因素,实现达标排放、污染物排放总量控制。 用能单位宜积极利用可再生能源,促进能源消费清洁化,推进能源绿色转型与温室气体减排。 6.5.2 电能替代 用能单位可在满足生产工艺要求的基础上,统筹能源效率、成本和排放物等指标,科学组织,使用电能替代燃煤、燃油、燃气等化石能源,实现能源结构调整、促进节能减排。 6.6智能用电 6.6.1电力智能化运维 用能单位可在工业领域电力需求侧管理平台或能源管控中心等智能化用电系统的支持下,协同配用电网、虚拟电厂、分布式发电、智能微网、储能,以及电动汽车等资源,合理参与需求响应、电力交易、大数据处理、云平台、智慧城市等行动,实现电力系统智能化运维,促进智能制造升级。 6.6.2 智能分析与策略管理 用能单位宜充分利用工业领域电力需求侧管理平台等智能化用电系统的数据分析能力,实现对电能等能源介质从供应、分配输送、利用、余能回收或外供等“能源流”的智能化管理,并与智能制造系统(“制造流”)、财务运维系统(“价值流”),以及设备维护管理(“设备状态”)等协同,实现电能数据的精准管理;并以此对电力市场电能品种价格时段等信息,以及碳交易等新型价值资源进行集成,实现能源相关资源资产的策略管理。 6.6.3电能供需耦合 用能单位宜提高电能信息化管理水平,参与“源—网—荷—储”一体化智能调节,通过智能电网和能源互联网等平台,逐步并扩大电力需求侧和供给侧的双向互动,实现电能供需耦合。 实践电能供需耦合的具体措施可包括:调整用电结构、扩大可再生能源使用,辅以储能技术、协调分布式供能(电)系统与集中式电力系统(大电网),优化最大需量计划管理(即“契约用电负荷/合约用电”),与分散式冷、热、电、气等多样化需求耦合,实现能源的清洁、低碳、安全、高效、经济、便捷利用。 注:随着能源技术革命和体制革命推进的不断深入,电力供给侧和需求侧将在智能电网和能源互联网平台上逐步扩大供需耦合范围,供需耦合既是智能电网和能源互联网内在发展的目的和表现形式,也是构建现代化能源体系的必然结果。 7工作评价 7.1 自评价 7.1.1日常监督 用能单位宜制定和实施电力需求侧管理关键特性的测量计划,对其用电系统中的关键特性进行定期监视、测量和分析,确保上述数据是准确、可重现的,并保留相应记录。 测量方式可使用电力需求侧管理平台或能源管控系统相应模块,也可根据管理要求自行确定。 若发现重大偏差,应评估其影响并采取应对措施。 注1:宜依据GB/T 13462、GB/T 12497、GB/T 13466、GB/T 13469、GB/T 13470、GB/T 17981、GB/T 19065、GB/T 27883、GB/T 29455、DL/T 985等标准,对配用电系统的经济运行情况进行评价; 注2:宜确定并使用统计分析技术,对各项指标进行对比及可视化展示; 注3:可采用多层次、多维度内外对标,不断比对最佳实践数据,寻找差距、挖掘改善潜力。 7.1.2 定期评价 用能单位可按照GB/T 15316、GB/T 31960、GB/T 32127等标准,参考DL/T 1330、DB11/T 1213、Q/GDW 11040等规范性文件要求,建立评价方法,按所确定的周期频次,评价用能单位电力需求侧管理工作开展的适宜性与有效性。 可设立由电力主管领导负责,包括技术服务方、工程项目、设备动力、运营管理和质量管控等专业技术人员在内的自评价小组,并指定具有相应专业技术能力的人员,按所确定的方法进行自我评价,通过全面诊断寻求改进机会,进行必要的综合治理。 自评价结果可用于用能单位自我改进,也可作为开展第三方评价或申报示范项目的参考信息。 注:可借鉴卓越绩效模式,评价自身电力需求侧管理开展的成熟程度,并进行内部水平对比或纵向历史数据分析。 7.2 第三方评价 用能单位可先开展自评价,在取得阶段性成效后委托第三方评价机构,按照《工业企业实施电力需求侧管理工作评价办法(试行)》(工信部运行〔2015〕97号)等文件,评价其开展情况、取得成效、经验特点,以及差距不足、结论建议等,获得相应评价结果。 第三方评价结果可作为申报全国工业领域电力需求侧管理示范企业的资料证明,通过第三方评价达到“A级”的企业可优先被推荐为示范企业;达到“AA级”及以上的企业,可直接作为示范企业。 如申请电力需求侧管理项目奖励资金或补贴,需第三方核证;如果参加需求响应(DR)项目,由规定的负控关口平台或指定平台提供权威数据进行核算。 注:宜将评价结果与同类或相近类型用能单位数据作对标分析。 8 持续改进 8.1 确定改进目标 用能单位宜持续改进电力需求侧管理系统,提升其适宜性、充分性、有效性和规范性。 用能单位可根据自评价或第三方评价结果,对比相关规范或最佳实践标杆,寻找差距、识别改进方向,确定改进目标。 注:改进目标宜关注提高需求侧管理绩效、节约电能成本、提高电能利用效率和单位电能产出率,实现更精准化电能管理。 8.2 制定优化方案 用能单位宜制定行动措施和优化方案,并采取必要措施,确保目标达成。 8.3 跟踪改进过程 用能单位宜确定项目管理规范和责任要求,及时跟踪改进过程,避免偏离目标结果。 8.4 纳入制度规范 用能单位宜及时巩固改进成果,将其纳入管理规范或作业标准,以实现持续改进。 9 激励措施 9.1 示范申报 用能单位如拟申报全国工业领域电力需求侧管理示范企业或园区,可依据工业和信息化部有关文件要求,向所在地省级主管部门或中国电力企业联合会申报。 如获推荐,可参与示范经验宣传推广,并可适时申请智能制造、绿色制造重大工程、国家新型工业化产业示范基地建设等政策支持。 9.2 其他激励 开展电力需求侧管理的用能单位,鼓励申请政府财政奖励、费用补偿、可中断负荷电价和高可靠性电价、辅助服务费用、重点能耗企业监测补偿、节能技改或合同能源管理项目奖励等政策支持,支持优先参与直供电试点及电力市场交易,并给予媒体宣传、荣誉证书等相关激励。 附录 参考文献 1. 《能源生产和消费革命战略(2016-2030)》 2. 《中共中央 国务院关于进一步深化电力体制改革的若干意见》(中发〔2015〕9号) 3. 《关于深入推进供给侧结构性改革做好新形势下电力需求侧管理工作的通知》(发改运行规〔2017〕1690号) 4. 《工业和信息化部办公厅关于印发工业领域电力需求侧管理专项行动计划(2016-2020年)的通知》(工信厅运行函〔2016〕560号) 5. 《关于做好工业领域电力需求侧管理工作的指导意见》(工产业政策〔2011〕第5号) 6. 《工业企业实施电力需求侧管理工作评价办法(试行)》(工信部运行〔2015〕97号) 7. 《关于组织推荐2017年全国工业领域电力需求侧管理示范企业(园区)的通知》(工信厅运行函〔2017〕540号) 8. 《电力需求侧管理城市综合试点项目类型及计算方法(试行)》(国家发改委运行局 2014.11) 9. 《电力需求侧管理平台建设技术规范(试行)》(发改办运行〔2014〕734号) 10. 《有序用电管理办法》(发改运行〔2011〕832号) 11. 《有序开放用电计划的通知》(发改运行〔2017〕294号) 12. 《关于开展分布式发电市场化交易试点的通知》(发改能源〔2017〕1901号) 13. 《关于推进电能替代的指导意见》(发改能源〔2016〕1054号) 14. 《解决弃水弃风弃光问题实施方案》(发改能源〔2017〕1942号) 15. 《关于促进储能技术与产业发展的指导意见》(发改能源〔2017〕1701号) 16. 《客户侧储能系统并网管理规定》国网江苏省电力公司(试行)2017) 17. 《关于加强储能技术标准化工作的实施方案(征求意见稿)》(国家能源局综合司 2018.10) 18. 《关于推进“互联网+”智慧能源发展的指导意见》(发改能源〔2016〕392号) 19. 《能源管理优先事项:自我评估工具》(最佳实践指南306),英国碳信托有限公司 20. GB/T 32507-2016 电能质量 术语 21. GB/T 2900.1-2008 电工术语 基本术语 22. GB/T 12325-2008 电能质量 供电电压偏差 23. GB/T 12326-2008 电能质量 电压波动和闪变 24. GB/T 14549-1993 电能质量 公用电网谐波 25. GB/T 15543-2008 电能质量 三相电压不平衡度 26. GB/T 15945-2008 电能质量 电力系统频率偏差 27. GB/T 18481-2001 电能质量 暂时过电压和瞬态过电压 28. GB 17859-1999 计算机信息系统安全保护等级划分准则 29. GB/T 13462-2008 电力变压器经济运行 30. GB/T 12497-2006 三相异步电动机经济运行 31. GB/T 13466-2006 交流电气传动风机(泵类、压缩机)系统经济运行通则 32. GB/T 13469-2008 泵系统经济运行 33. GB/T 13470-2008 通风机系统经济运行 34. GB/T 17981-2007 空气调节系统经济运行 35. GB/T 19065-2011 电加热锅炉系统经济运行 36. GB/T 27883-2011 容积式空气压缩机系统经济运行 37. GB/T 29455-2012 照明设施经济运行 38. GB/T 19001-2016 质量管理体系 要求 39. GB/T 19004-2011 追求组织的持续成功 质量管理方法 40. GB/T 13869-2008 用电安全导则 GB/T 26399-2011 电力系统安全稳定控制技术导则 41. DL/T 985-2005 配电变压器能效技术经济评价导则 42. DL/T 1102-2009 配电变压器运行规程 43. DL/T 573-2010 电力变压器检修导则 44. AQ/T 9006 -2010 企业安全生产标准化基本规范 45. Q/GDW 11040-2013 电力需求侧管理项目节约电力电量
  • 《工信部等九部门联合印发《原材料工业数字化转型工作方案(2024—2026年)》》

    • 来源专题:智能制造
    • 编译者:icad
    • 发布时间:2024-02-06
    • 关于印发《原材料工业数字化转型工作方案(2024—2026年)》的通知 工信部联原〔2023〕270号 各省、自治区、直辖市及计划单列市、新疆生产建设兵团工业和信息化、发展改革、财政、自然资源、生态环境、国有资产、市场监管主管部门,各有关单位: 现将《原材料工业数字化转型工作方案(2024—2026年)》印发给你们,请结合实际认真贯彻落实。 工业和信息化部 国家发展和改革委员会 财政部 自然资源部 生态环境部 国务院国有资产监督管理委员会 国家市场监督管理总局 中国科学院 中国工程院 2024年1月16日 原材料工业数字化转型工作方案 (2024—2026年) 原材料工业是国民经济的基础性产业,具有资源能源密集、过程机理复杂、生产连续性强等流程性工业突出特点。近年来,我国原材料工业数字化转型不断走向纵深,部分行业龙头企业达到国际领先水平,但仍面临对数字化转型认识不够、数字化转型基础差异大、建模仿真难度高、人工智能等数字技术融合应用不深入、复合型人才紧缺等问题。为推动原材料工业数字化转型,加快推进新型工业化、建设制造强国,制定本方案。 一、总体要求 (一)指导思想 以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大精神,认真落实全国新型工业化推进大会部署,完整、准确、全面贯彻新发展理念,坚持规划引领、问题导向、系统部署、分类推进,以提质升级、降本增效、绿色安全为最终目的,着力夯实数字化转型基础,深化数字技术赋能应用,强化软硬协同,完善支撑保障体系,以产业数字化驱动全产业链业务变革,加快推进原材料工业高端化、绿色化、安全化、高效化发展,全面提升行业核心竞争力,构筑国际竞争新优势。 (二)主要目标 原材料工业数字化转型取得重要进展,重点企业完成数字化转型诊断评估,数字技术在研发设计、生产制造、经营管理、市场服务等环节实现深度应用,生产要素泛在感知、制造过程自主调控、运营管理最优决策水平大幅提高,为行业高质量发展提供有力支撑。 应用水平明显提升。打造120个以上数字化转型典型场景,培育60个以上数字化转型标杆工厂,形成一批数字化转型标杆企业。重点行业关键工序数控化率、数字化研发设计工具普及率等指标显著提升,数字化转型成熟度3级及以上企业提升至20%以上。 支撑能力显著增强。突破一批数字化转型急需的关键核心技术,制修订一批先进适用的数字化转型标准规范。推广应用100款以上数字化装备、智能仪器仪表、工业软件等优秀产品,培育100家以上专业水平高、服务能力强的优秀系统解决方案提供商。 服务体系更加完善。建设1个新材料大数据中心、4个重点行业数字化转型推进中心、4个重点行业制造业创新中心、5个以上工业互联网标识解析二级节点、6个以上行业级工业互联网平台。 二、主要任务 (一)强化基础能力 1.夯实数字化基础。加强企业数字化基础设施建设,提升数据采集、数据汇聚和数据质量管理等能力。开展基础自动化、管理信息化升级改造,提高研发设计、生产制造、经营管理、市场服务等环节的数据采集能力,重点围绕高温高压、多介质、多粉尘、高噪声、强干扰、密闭等复杂工况和特殊装备,科学合理布设高清摄像、高精度传感、高性能定位模组等采集设备,推广应用可编程逻辑控制器(PLC)、分布式控制系统(DCS)、安全仪表系统(SIS)等工业控制系统,加强实验开发、制造执行、分析测试、采购销售等信息化系统部署。规范数据接口、数据结构,加强全链条数据的集成汇聚和存储管理,构建统一数据湖。建立健全数据质量管理机制,强化数据清洗、数据加工、数据审计等能力,提高数据完整性、准确性、一致性、及时性、可用性。 2.完善网络化基础。引导企业构建泛在感知网络环境,支撑数据要素流动传输,实现设备互联、业务互联及产业互联。开展内网改造,加快5G、工业光网、Wi-Fi 6、工业以太网、北斗导航等新型网络通信技术在车间、工厂、矿山的广泛覆盖,打通研发、生产、管理、服务等不同环节“数据孤岛”,提高企业内部业务数据集成与协同水平。基于IPv6、软件定义网络、网络虚拟化等技术打造高质量外网,支撑产业链上下游企业间的物流、产能、金融等产业资源数据开放共享,实现跨地域、跨行业的资源配置。持续推进重点行业工业互联网标识解析二级节点建设和应用,开展关键装备、核心模型、重要产品、关键原辅料等要素的全网注册和数据解析,提升人、机、料、法、环互联互通水平。 3.强化智能化基础。加强重点行业智能装备、算力设施、模型算法的建设部署和推广普及,为数字化转型应用提供关键智能化支撑。加快无人运输车辆、作业机器人、巡检机器人、智能检测装备等新型智能装备部署应用,推进催化、裂化、冶炼、熔铸、均化等重大工艺装备智能化改造升级,显著提升生产过程感知、决策和执行能力。加强企业高性能算力供给,促进智能算力与通用算力协同,满足不同类型算力的业务需求,为海量工业数据实时分析提供高效经济的算力支持。提升流程模拟、工艺仿真以及基础物性数据库等工业软件普及程度,推动各行业内生产调度、工艺控制、设备管理、能源管理等经验知识转化为模型算法,形成可在行业复制推广的模型库、算法库和知识库,加速工业技术软件化。 (二)深化赋能应用 4.助力高端化升级。加快产品高端创新,鼓励行业领军企业、科研院所、高校基于人工智能、高通量计算等技术开展材料成分设计、结构优化和性能预测,推动材料研发模式变革,强化关键战略材料供给,加速前沿材料创新和产业化应用。推动生产过程高端升级,综合应用机器视觉质检装备、智能化在线监测分析仪器仪表、质量管控系统等加强生产过程质量管控,开展先进过程控制、计划调度一体化、质量在线监测、设备全生命周期管理等集成应用,提高生产管控的精准性和效率效益。提升服务高端化水平,推广汽车钢、电工钢等供应商早期介入(EVI)“精品+服务”模式,研发应用预测式销售智能决策系统,打造协同共享的智能物流服务体系。 5.支撑绿色化发展。基于数字技术开展装备及工艺流程优化升级改造,促进减污降碳、节能增效。推动企业建设碳排放管控平台和重点产品碳足迹基础数据库,综合运用物联网、人工智能、区块链、工业互联网标识解析等技术开展碳排放计算与碳足迹追溯,促进低碳发展。推动企业和园区加强数字化能源管控,开展重点用能环节的在线监测、运行优化与系统平衡,促进新能源应用和化石能源减量。鼓励建设环境管控平台,基于5G、无人机、遥感、自动监控、机器视觉等技术,对生产、原燃料和产成品运输、治污设施运行、污染物有组织和无组织排放、厂区环境质量等数据进行采集、分析和预警,实现环境智能化管理。推广低噪声工艺和智能化装备,涉异味园区及企业加强恶臭自动监测和风险防控。鼓励建设面向行业的循环再生资源交易平台,促进工业固废与各类副产品的交易流通与综合利用。 6.保障安全化生产。加快在线分析仪器仪表、智能传感器等技术产品和巡检机器人、消防机器人等安全应急装备的应用,提升面向高温、易燃、易爆、有毒、有害等原材料生产工序车间、设备设施、库区罐区的快速感知能力。鼓励企业建设数字化安全管控平台,建立风险特征库、失效数据库及故障预测分析模型,开展关键设备、关键软件、系统运行故障及其衍生安全风险的实时监测和分析预测,打造超前预警预防能力。建设安全生产案例库、应急演练情景库等知识库,开展风险仿真、应急演练和隐患排查,强化应急处置能力。基于评估模型和工具集,开展安全处置措施评价评估与安全事故追溯分析,增强系统评估能力。 7.实现高效化运营。推动企业从传统经验型决策管理向数据驱动的智能决策管理模式转变,面向市场需求预测、销售产品组合调配、采购配料优化、业财一体化管理等建立业务模型,提升企业经营分析、全过程预测以及市场快速响应能力,打造销售、采购、生产、仓储、物流等全链条一体化管理模式,实现供产销全流程高效运营。推进产业链上下游企业间的业务协同和资源优化,支持重点行业龙头企业及第三方机构基于人工智能、区块链、工业互联网标识解析等技术,打造面向企业全价值链、全资产要素和产品全生命周期的协同制造平台,实现制造能力、技术、知识、金融等共享、调度和优化,提高产业链供应链资源配置效率。 (三)加强主体培育 8.培育数字化转型标杆。依托智能制造典型应用场景和示范工厂、工业互联网、中小企业数字化转型城市、新一代信息技术与制造业融合发展等现有试点示范工作基础,立足原材料工业特点和数字化转型需求,开展原材料工业数字化转型标杆选树行动。面向研发设计、制造执行、质量控制、设备运维、仓储物流、能源环保、安全管理等环节,打造一批数字化转型典型场景。围绕数字技术在提升产品合格率、资源综合利用效率、全员劳动生产率和节能减排水平等方面的融合应用,打造一批“5G+工业互联网”融合应用成效显著、实现制造过程数字孪生的数字化转型标杆工厂。面向资源勘探、采矿选矿、矿石运输、经营决策等全过程,建设一批资源管理数字化、生产管控智能化、生产流程少人无人化、安全管理集成化的智能矿山。围绕技术能力提升、业务流程再造、经营管理决策优化、提质降本增效,打造一批制造、管理、服务全流程自感知、自学习、自决策、自执行、自适应的数字化转型标杆企业。 9.推动大中小企业融通发展。支持原材料行业龙头企业和“链主”企业建设数据驱动、可信交互的产业链协作平台,与配套中小企业共享智能设备、智能仪器、智能仪表、数字化软件、工业APP等数字技术产品,向中小企业开放市场、平台、物流等资源。引导行业领军企业分享智能场景、智能工厂建设经验,为中小企业在绿色冶炼、精密加工、高效热处理等环节数字化转型升级提供技术支持和一体化解决方案。培育一批专注细分领域、数字化水平较高的专精特新“小巨人”企业和单项冠军企业,强化与大型企业的专业化协作,加强数字技术、产品、装备供应链配套支撑。开展中小企业数字化转型城市试点,促进原材料工业中小企业转型升级。 10.推进产业园区智慧化建设。充分运用5G、标识解析、大数据、人工智能、云计算、物联网、区块链等技术,加强化工、有色金属等重点行业园区数字化基础能力升级和公共服务平台建设,推动园区数据互联互通,实现基础设施、资源能源、技术人才等要素共享共用。引导园区将数字技术与现代化管理深度融合,开展安全生产、风险防范、环境管理、能源管理、应急管理、物流管理等重点环节的智能预警与分析评价,推进行业耦合发展,提升园区发展与管理水平。推动数字化协同制造、共享制造在原材料工业集聚地区规模化发展,构建数实结合的产业集群发展新生态。 (四)完善支撑服务 11.加强技术创新供给。支持企业、科研院所、高校等相关单位组建创新联合体,聚焦高效合成分离、纯净化冶炼、近净成形等典型应用场景,围绕数据挖掘、工艺仿真、过程模拟、数字孪生等关键技术开展理论、模型、算法攻关,加速技术创新突破。研制一批技术领先、性能优良的大型PLC、智能化仪器仪表、智能阀门等标准化产品,开发一批先进适用可靠的工程数字化设计与交付、高级计划调度排产、智能化过程控制等高端工业软件和工业APP,依托智能制造系统解决方案揭榜挂帅等工作,面向重点行业培育一批产品和系统解决方案。加快原材料智能制造领域全国重点实验室、工程(技术)中心的整合优化重组。分行业建设原材料工业制造业创新中心,整合各类创新资源,开展数字化转型关键共性技术攻关,打通技术开发、转移扩散到商业化应用的创新链条。 12.强化人工智能驱动。探索建立原材料企业与人工智能企业之间的需求匹配和创新协同机制,加快推进人工智能技术赋能原材料工业。推动将成熟人工智能技术引入生产调度优化、过程模拟仿真、运营管理决策、安全管控等典型场景,催化一批低成本、高价值人工智能产品和解决方案,培育若干技术能力强、服务品质优的人工智能技术提供商。建设适用于生成式人工智能的行业数据集,基于现有通用大模型技术底座进行定制化开发训练,构建细分行业大模型,面向新材料研发、供应链优化、大宗商品价格预测等应用需求,加快大模型技术深度创新。 13.增强公共服务支撑。聚焦行业数字化转型需求,重点打造涵盖技术创新转化、产业生态建设和数据要素赋能的公共服务支撑体系。在重点行业建设一批工业互联网数字化转型促进中心,培育一批数字化转型服务机构,开展系统性解决方案及轻量化工业APP等技术产品研发及测试验证、解决方案供需对接、数字化诊断咨询等,推动智能制造发展水平和效能评估、进园区和专家行等公益服务,助力企业数字化转型。建设新材料大数据中心,构筑多层次、相互协同的新材料数据资源体系,形成数据驱动的研发模式、生产组织模式、产用衔接模式。建设国家工业互联网大数据中心原材料行业分中心,围绕行业核心业务汇数用数和赋能服务。推进建材、有色金属等行业工业互联网平台建设,持续提升石化化工、钢铁等行业重点工业互联网平台能力,支持有条件平台向跨行业跨领域工业互联网平台转化升级,重点面向中小企业提供运行优化、能源管理、设备运维、环境保护、安全管控等领域数字化转型服务支撑。 14.加强网络与数据安全治理。落实工业互联网安全分类分级管理要求,建立完善分类分级管理制度,科学识别和判定企业网络安全级别,落实适合自身发展实际的安全防护措施,持续开展网络安全演练,实战化检验提升重大风险防御和处置能力。持续完善全流程数据安全工作机制,研制细分行业重要和核心数据识别细则等标准规范,加强宣贯培训,落实重要数据识别备案、安全防护、风险评估、监测预警和应急处置等要求,全面提升数据安全保护能力。鼓励研究机构、数据交易所、重点企业合作建设面向细分行业的可信数据空间,保障企业间数据流通的安全、可信、可控。推动企业建立工控安全管理制度,强化技管结合,切实提升工控安全防护水平,落实工控安全主体责任。 三、保障措施 (一)加强组织实施。工业和信息化部等相关部门按照职责分工抓好落实,各地区加强与本工作方案的政策衔接,推动实施企业数字化转型“一把手工程”。加强原材料行业数字化转型监测,组织定期开展评估。成立原材料工业数字化转型专家委员会,强化对“智改数转网联”重大问题和决策的智库支撑。成立4个重点行业数字化转型推进中心,落实相关重点任务,开展数字化转型诊断、咨询、评估等服务。征集遴选原材料工业数字化转型标杆企业、典型场景、解决方案,探索形成可复制、可推广的新业态、新模式、新路径。 (二)加强政策支持。研究制定原材料工业数字化转型关键技术和重点产品清单,用好现有专项资金渠道,统筹支持原材料工业数字化转型基础研究、技术创新和应用开发。围绕原材料工业数字化转型需求,遴选一批优秀系统解决方案提供商。发挥国家产融合作平台作用,将先进适用技术纳入支持范围,通过实行差别化信贷政策、创新金融产品等方式,强化金融机构对数字化转型的支持。 (三)加强标准建设。围绕研发设计、生产制造、经营管理、绿色安全等,持续完善石化化工、钢铁、有色金属、建材等行业智能制造标准体系。推动面向行业特色需求的新型工业网络、人工智能、工业互联网平台等技术标准制修订,打造一批覆盖智能采选、无人浇铸、管网优化、窑炉控制等典型场景的应用标准,制定重点行业的数字化转型水平与成效评估标准。强化标准体系与计量测试、认证认可、检验检测体系的衔接,加大标准宣贯力度,促进成熟标准落地应用。 (四)加强人才引育。开展原材料工业数字化领域重点人才需求摸底,推动建立重点人才和专家信息库。加强人才培养规划布局,支持企业设立“数字化转型首席设计师”“首席数据官”,依托国家相关人才培养工程和攻关项目,加快培育一批科技领军人才、青年骨干人才,以及一批既懂原材料工业又懂数字技术的复合型人才。依托职业教育提质培优行动计划,加速培育数字化转型急需紧缺的工程师和技术技能人才。支持引进数字化转型海外高端人才。 (五)加强宣传引导。支持地方举办重点行业数字化转型大会,发布重大技术成果和典型案例。加强行业数字化转型学习培训和对标引导,提升企业数字化转型认知水平,推动经营管理理念和转型发展理念变革。鼓励行业协会学会举办原材料工业数字化转型技术创新应用大赛,评选表彰优秀人才和团队。充分发挥主流媒体、官方门户网站、行业协会、专业智库等渠道作用,强化对原材料工业数字化转型经验和成效的宣传报道。 附件: 1.石化化工行业数字化转型实施指南 2.钢铁行业数字化转型实施指南 3.有色金属行业数字化转型实施指南 4.建材行业数字化转型实施指南 .