《硅基负极材料或成电池行业“明星”》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-04-04
  • 随着新能源车的普及,为适应更高能量密度的电池需求,硅基负极材料正步入产业视野。硅基负极被看作下一代锂电池负极材料,已经明显感受到需求跨过平台期。有业内人士预计,即将2022年迎来爆发,2023年开始放量。随着更多原材料企业的加入,硅基负极材料被列入了工信部重点新材料,将成为国家重点鼓励发展的新能源电池材料之一。

    多家企业入局

    被誉为“北交所明星股”、锂电负极材料龙头的贝特瑞,近日宣布,2022年新春开年首笔投资投向了硅基负极材料项目。最新公告显示,中国宝安子公司贝特瑞拟与深圳市光明区政府签署投资合作协议,拟在深圳市光明区内投资建设年产4万吨硅基负极材料项目,项目预计总投资50亿元。

    而随着硅基负极材料的“明星”效应不断释放,多家传统负极材料厂都已经开始入局硅基负极。据公告,璞泰来在江西和江苏溧阳均建设有硅基负极中试线,已经通过部分客户认证;翔丰华硅基负极已经具备产业化基本条件。动力电池厂商国轩高科也有5000吨/年硅基负极材料项目正在建设中。

    据了解,中国负极行业产量在已经占据全球约六成以上市场,贝特瑞、璞泰来、杉杉股份市场份额占比居前。业内人士表示,当前硅基负极主要应用在消费电子、电动工具等领域,而蕴藏更大增量空间的是动力电池领域,尤其即将到来的4680电池将成为改变市场的暖风。目前,4680电池已经处于大规模量产前夜。

    诸多难题破解

    公开资料显示,高比容量优势使得硅基材料被视为理想的下一代负极材料。硅的比容量高达4200mAh/g,是碳基材料的10倍以上,是目前已知比容量最高的负极材料。碳基材料是目前使用最为广泛的负极材料,其理论比容量为372mAh/g。

    然而,硅基负极材料也存在硅易体积膨胀、导电性差、首次充放电损耗大等问题。由于硅材料在充放电时体积膨胀可达120%—300%,导致硅颗粒分化及SEI膜的破裂增厚,将影响电池首充效率与寿命。

    针对此短板,科研人员发现,以碳辅硅,兼具容量与寿命。据此,业内提出的解决方案是,将硅碳复合材料与硅氧复合材料作为硅基负极的主要技术路线。具体说,就是在能量密度和稳定性之间寻找平衡,以实现材料性能的实际改善。

    当前的硅基负极产品是将硅和石墨掺杂起来复合使用,以硅颗粒提供储锂容量,碳材料缓冲体积变化,同时兼顾了较高的比容量与较长的使用寿命。而对于新能源车普遍采用的锂电池负极材料而言,一般分为碳系负极和非碳系负极,其中,硅碳负极材料相比于石墨负极材料的比容量大,能极大提高锂电池的能量密度,被认为当前性能最好的负极材料。

    然而,新的问题又出现了,虽然硅基材料缓解了纯硅材料的体积膨胀,但硅基负极的寿命与首次充电效率相较于碳基负极仍有差距。对此,业内提出了更新的解决方案,一是负极预锂化,即在电池工作前向电池内部补充锂离子,将有效提升首次充电效率与电池寿命;二是改进硅基复合材料,除硅碳(纳米硅)路线、硅氧路线外,通过加入碳纳米管、石墨烯等新型导电剂材料,也将提升硅基负极的寿命与循环性能。

    或迎市场爆发

    在业内看来,硅基负极材料即将迎来市场爆发。国内主要硅基负极材料生产企业包括中科电气、贝特瑞、江西正拓、深圳斯诺等,其中,贝特瑞具备先发优势,目前已经进入了松下-特斯拉的供应链,同时已量产供货给韩国的三星电池,并计划提升惠州工厂的产能,硅碳和硅氧各生产3000吨/年。

    与此同时,比亚迪、宁德时代、国轩高科、贝特瑞、杉杉股份、力神、比克、万向等都展开了对硅碳负极材料的布局。其中,杉杉股份的高容量硅合金负极材料已小批量生产,并对宁德时代供货。从产业来看,硅碳负极材料在国内的发展处于初期阶段,不少企业已布局生产线,进行小批量生产。据数据统计,2020年国内的硅碳负极材料出货量为0.9万吨,占总负极材料出货量的比例约2%。

    业内普遍认为,国内的硅碳负极材料产业化需要一个整合过程,一方面要求上游材料企业提高产品的性能,另一方面还要调配好与其它掺杂材料的比例,以及与电池企业研究锂电池封装工艺的提升。相信随着国内负极材料生产企业的快速布局,市场的渗透率逐步提升,规模级的产业化将会加快来临,硅碳负极材料的市场规模将会迎来春天。

  • 原文来源:http://www.nengyuanjie.net/
相关报告
  • 《硅碳负极材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-23
    • 被寄予厚望的下一代锂电池负极材料 硅碳负极材料的理论储锂容量最高可达到 4200mAh/g,比目前广泛使用的石墨类负极材料的 372mAh/g 高出 10 倍有余。其产业化后,将大大提升电池的容量,满足终端对电池容量日益增长的需求。 材料简介 硅碳负极材料是指将硅材料与不同结构的碳材料掺杂,以此显著提高负极材料的容量和电化学性能的材料。 硅是目前已知能用于负极材料理论比容最高的材料,可以达到目前主流的石墨负极的 10 倍以上,安全性高、资源储量丰富、制作成本低。而碳材料具有较高电导率,结构相对稳固,在循环过程中体积膨胀很小,通常在10% 以下,且还具有良好的柔韧性和润滑性。硅碳负极材料综合了二者优势,是未来负极材料的发展重点。     应用领域 消费电子终端产品电池、新能源汽车动力电池、储能… 发展历程   行业发展目标 《新材料产业发展指南》提出,要提升镍钴锰酸锂 / 镍钴铝酸锂、富锂锰基材料和硅碳复合负极材料安全性、性能一致性与循环寿命,开展高容量储氢材料、质子交换膜燃料电池及防护材料研究,实现先进电池材料合理配套。 《重点新材料首批次应用示范指导目录(2018 年版)》对硅碳负极材料和纳米硅碳负极材料提出了详细要求: 硅碳负极材料:低比容量(< 600mAh/g):压实密度> 1.5g/cm ,循环寿命> 500 圈(80%,1C);高比容量(> 600mAh/g):压实密度> 1.3g/cm ,循环寿命> 200 圈(80%,0.5C)。 纳米硅碳负极材料:低比容量(< 450mAh/g):压实密度> 1.7g/cm ,循环寿命> 1500 圈(80%,1C);高比容量(> 450mAh/g):压实密度> 1.6g/cm ,循环寿命> 800 圈(80%,0.5C)。 市场规模预测 据预测,到 2020 年硅碳负极材料渗透率将达到 15%,需求量将超过 4 万吨,市场空间为 50 亿元左右,同时市场集中度将非常高。   应用案例 3C 消费类电池: 日立麦克赛尔将硅碳负极材料用于智能手机、可穿戴设备等小型锂离子电池上。
  • 《镁基固态储氢材料 能否成下一个储能风口?》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-02-18
    • 镁基储氢材料是金属固态储氢材料中储氢密度最高的材料。 面对能源安全、环境保护等压力,氢能有望在能源转型过程中扮演重要角色,氢能作为目前最具潜力的二次清洁能源在我国能源转型中将占据重要地位。而每当聊起氢能源,有一个重要话题总是“如影随形”:储存和运输是氢气大规模应用的前提。 在氢气制、储、运、加、用的产业链环节中,储、运环节是高效利用氢能的关键,也是影响氢能走向产业化的重要环节。高效安全的储能技术是全球新能源开发与应用的重大技术瓶颈。氢能的安全高效储存和运输对国家氢能战略意义重大,特别是对燃料电池汽车、风能光能产业、电力行业、航空航天等领域有重要的直接应用价值。 镁基储氢材料是金属固态储氢材料中储氢密度最高的材料。随着近几年全球镁及镁合金的研究呈现爆发式增长,我国也已经成为全球重要的镁生产国、应用国和研究国,在国际上具有一定的技术优势。 镁基储氢材料将迎来怎样的市场发展空间?我国又如何在这个新领域持续保持领先优势?今天,请随《中国科技信息》一起来聊聊这些问题。 最有发展潜力的固态储氢材料之一 目前主要的氢储运方式分为气态储氢、液态储氢和材料储氢。与气态储氢和液态储氢相比,固态储氢既可以大幅提高体积储氢密度,又可以提高储运氢的安全性,因此,寻找性能优越、安全性高、价格低廉且环保的储氢材料是当前固态储氢研究的关键。 将眼光投向广阔的自然界中,某些金属具有很强的捕捉氢的能力,在一定的温度和较低的压力条件下,这些金属能够大量“吸收”氢气,反应生成金属氢化物,同时放出热量。其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢释放出来,可实现上万次循环充放氢。这些会“吸放”氢气的金属,即为固态储氢材料。 如此看来,固态储氢具有储氢密度高、成本低、安全稳定和使用周期长等特点,而金属镁在储氢研究领域具有成本低、质量轻、无污染等优点,被认为是最有发展潜力的固态储氢材料之一。专家认为,镁基储氢材料是金属固态储氢材料中储氢密度最高的,一旦大规模应用,将根本上改变传统储能模式中效率低、成本高、安全性差等问题。 成本低、优点多 镁基储氢材料极具应用前景 那么,镁基储氢材料具体有哪些优势?首先,它具有储氢量高、镁资源丰富以及成本低廉等优点,被认为是极具应用前景的一类固态储氢材料。我国在镁资源方面非常有优势,全球大概90%的镁都是生产于中国,镁年产量占全球85%以上,原料来源丰富且成本低,不存在材料被“卡脖子”的问题。因此,镁系储氢合金适合用于氢气的规模储运应用场景,可用于氢冶金、规模储能、加氢站等应用场景的氢气储存与运输。 此外,镁的性能非常好,储氢密度非常高,可以实现长循环寿命。具体来看,镁储氢密度是气态氢的1000倍、液态氢的1.5倍。由于镁及镁金属是常温常压,所以安全性远高于气态和液态储氢。此外,镁储氢还可纯化氢气。据悉,镁固态储氢材料在储氢过程当中可以转化为99.999%的绿氢。镁本身也是绿色制氢材料,如果把镁和水相结合,1克镁相当于2升氢气,它的储氢率可以达到15.2%。 其次,用镁合金来储存氢的技术可以应用到交通领域,如汽车、摩托车等。普通汽车的油箱储油量相当于5公斤至6公斤的氢产生的能量,需要80公斤至90公斤的镁合金容器,这与普通油箱的重量差不多,但体积较小。用氢作为动力并不是通过燃烧氢来获得,而是把氢直接转化为电能,进而为汽车提供动力。汽油燃料的效率在20%-30%,而氢通过能源电池直接转换为电能,效率可达70%-80%。 目前国内外正在开发面向应用场景的Mg基固态储运氢技术,但技术水平仍处于产业化初期阶段,仍需解决材料的规模低成本制备、大容量储氢罐设计、高温余热耦合集成等技术,实现储氢合金的高效安全吸放氢。 镁基储氢可能成为电池领域的颠覆者 目前,储能行业虽然热度高涨,但资源有限、成本高、安全性问题没有根本解决仍是制约行业发展的难题,尤其是锂离子电池资源短缺、安全隐患、污染等问题凸显。同时,数字显示到2050年,可再生能源装机容量可以比2020年增加10倍,需要大量的能源储存,按照目前的储能量远远不够,现有储能技术遇到了严重的瓶颈。 相比而言,镁电池成本低、安全性高、燃料密度与锂电池相当,业内认为镁基储氢可能成为电池领域的颠覆者。例如,作为负极来说,镁电池是现在商用锂电池负极的6倍。在市场上可以看到,目前已经有不少企业入局镁基固态储氢材料领域,相继取得进展。镁基固态储运氢技术的发展,将为未来中国能源体系变革、交通运输方式低碳化转变奠定基础。 根据中国氢能联盟预计,到2025年我国氢能产业产值将达到1万亿元;到2050年氢能在我国终端能源体系中占比超过10%,产业链年产值达到12万亿元,这将对镁基储氢材料提出了大量市场需求。专家表示,镁领域技术一旦成熟,将带领镁产业由目前的百亿级市场直接升级为万亿级市场。