《Science | 分散稳定了宿主-寄生系统耦合的生态和进化动态》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-03-16
  • 2024年3月14日,威斯康星大学麦迪逊分校的研究人员在Science发表了题为Dispersal stabilizes coupled ecological and evolutionary dynamics in a host-parasitoid system的文章。

    当生态和进化动力学在相似的时间尺度上发生时,由此产生的生态-进化动力学的持久性需要生态和进化的稳定性。这融合了生态学和进化生物学中的核心问题:物种如何共存,以及是什么维持了种群中的遗传多样性?

    在这项工作中,研究人员调查了一个宿主-寄生系统,其中豌豆蚜虫寄主快速进化出了对Aphidius ervi寄生者的抗性。野外数据和数学模拟表明,寄生蜂分散的异质性可以通过时间和空间产生对宿主的寄生介导选择的变化。实验显示了进化权衡加上适度的宿主在这种选择镶嵌体上的分散,如何导致宿主-寄生者共存并维持宿主抗性的遗传变异。该结果展示了分散如何稳定生态-进化动力学的生态和进化组成部分。

相关报告
  • 《Science | 与宿主的共同进化是杜鹃鸟寄生雏鸟物种变异的基础》

    • 编译者:李康音
    • 发布时间:2024-05-31
    • 2024年5月30日, 澳大利亚国立大学的研究人员在Science期刊发表了题为Coevolution with hosts underpins speciation in brood-parasitic cuckoos的文章。 相互作用的物种之间的共同进化被认为会增加生物多样性,但将微观进化过程与宏观进化模式联系起来的证据却很少。 研究人员利用二十年的行为学研究和历史 DNA 分析,揭示了与宿主的共同进化是雏寄生青铜鹃物种分化的基础。在宏观进化尺度上,研究人员发现与病毒性较弱的非寄生类群相比,病毒性较强的雏寄生类群具有更高的物种进化率,并且更有可能在共生关系中发生物种进化。 研究人员揭示了物种变异的微观进化过程: 宿主排斥布谷鸟雏鸟,这就选择了模仿布谷鸟雏鸟的形态。在杜鹃利用多种宿主的情况下,对模仿的选择推动了与宿主偏好相对应的遗传和表型分化,即使在同域中也是如此。该工作阐明了可能是最常见但特征不明显的生物多样化进化过程。
  • 《Science | 综述宿主调控微生物组》

    • 编译者:李康音
    • 发布时间:2024-07-30
    • 2024年7月19日,牛津大学Kevin R. Foster通讯在Science发表题为Host control of the microbiome: Mechanisms, evolution, and disease的文章,讨论了宿主调控其微生物群的机制。 多细胞生物与其相关微生物群之间的复杂关系长期以来一直被认为是维持健康的关键因素。微生物组由微生物群和宿主因子组成,在宿主生理的各个方面如免疫、营养和认知功能发挥着关键作用。以慢性竞争和快速进化为特征的微生物群的动态性质对宿主构成了重大挑战。为了应对这些挑战,宿主已经进化出一套控制机制,使他们能够塑造和操纵自己的微生物群,以最大限度地提高效益,同时最大限度地减少危害。 宿主控制特征包括影响微生物群的各种机制。这些包括免疫、屏障功能、生理稳态、转运和宿主行为。免疫,特别是脊椎动物的免疫系统,是已知的最复杂的宿主控制机制。它涉及天然免疫和适应性免疫,其中适应性免疫使宿主能够产生新的受体来识别和应对特定的微生物株。植物和动物共有的天然免疫利用模式识别受体来检测常见的微生物特征,从而驱动重塑微生物组并维持正常宿主-微生物组关系的反应。适应性免疫仅在有颌脊椎动物中发现,能学习并改变激活其受体的化学配体,从而对特定的微生物威胁做出量身定制的反应。 屏障功能是主机控制的另一个关键方面。屏障限制了微生物的定植和生长,有些屏障,如哺乳动物皮肤,完全阻断了通道,而另一些屏障,如粘膜上皮,则起到了选择性屏障的作用,限制了转运,但允许化学交换。粘液(mucus)是动物的特征,是容纳微生物群并实现气体交换的保护层。粘液还充当微生物的食物来源和附着位点,宿主可以利用它来塑造微生物群的组成。生理稳态在宿主控制中起着重要作用。宿主可以定义共生菌可以栖息的生态位,不同部位选择不同的微生物群。氧气控制在某些微生物组中尤为重要,促进了共生菌对复杂碳水化合物和其他底物的发酵。总肠道形态的进化也在生理控制中发挥作用,食草动物进化出了复杂的厌氧肠道,使植物材料能够发酵。 迁移(transit),即对微生物组的运动,是另一种宿主控制机制。平滑肌能够实现强有力的、有规律的蠕动收缩,这可以迅速清除导致疾病的共生菌。宿主行为也会影响微生物组。避免变质的食物可以降低摄入病原体的可能性,而对某些口味的偏好可以帮助宿主摄入有益的共生菌。此外,亲属之间特殊共生体的垂直传播也有助于稳定微生物群。 宿主控制机制以多种方式影响微生物组,可以改变存在的共生菌(partner choice,“伴侣选择”)或改变存在的寄生体的表型(partner manipulation ,“伴侣操纵”)。宿主可以通过调节宿主发育过程中的微生物组组装过程来影响共生菌的迁移,还可以通过限制问题共生菌的资源或为有益共生菌提供资源来影响已建立微生物的丰度。宿主可以直接影响驻留共生菌的行为,以增加它们从中获得的益处。最后,宿主可以塑造共生菌之间的相互作用,促进竞争,从而选择为宿主提供益处的生长旺盛的细菌。 共生进化和对抗适应(counteradaptation)对宿主来说是一把双刃剑。如果微生物的快速进化能够为微生物组内的有益性状产生自然选择,那么它就可以成为宿主控制的机会。然而,如果共生体进化使共生体能够逃避宿主的控制,也可能是一个问题。宿主控制机制通常针对微生物表型而不是基因型来限制反进化(counterevolution)。尽管如此,一些共生菌进化出了绕过宿主控制机制的方法,为宿主控制在共生菌进化中的作用提供了令人信服的证据。 疫苗接种提供了一种针对肠道微生物组中特定细菌的潜在策略。通过恢复肠道中的厌氧环境或调节关键营养素来增强宿主对共生体代谢的控制也可能是有益的。特别是随着年龄的增长,我们的微生物组变得更加多变和容易患病,促进健康粘液层和宿主上皮屏障完整性的策略具有明显的潜在健康益处。 总之,宿主控制机制是由自然选择形成的,以应对微生物组固有的(注意是inherent不是innate或inborn)多样性和可变性。了解这些机制对于理解微生物组和操纵它们以改善健康至关重要。