《“热点”提高了太阳能海水淡化的效率》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-06-19
  • 莱斯大学用阳光和纳米粒子净化盐水的太阳能方法甚至比它的创造者首先认为的更有效。

    赖斯纳米光子学实验室(LANP)的研究人员本周表示,他们可以通过添加便宜的塑料镜片将太阳光聚集到“热点”,将太阳能海水淡化系统的效率提高50%以上。结果可在“美国国家科学院院刊”网站上获得。

    “提高太阳能驱动系统性能的典型方法是增加太阳能聚光器并带来更多光线,”赖斯布朗工程学院应用物理专业研究生,该论文的共同主要作者Pratiksha Dongare说。 “这里的最大区别在于我们使用相同数量的光。我们已经证明,可以低成本地重新分配这种能量,并大大提高纯净水的生产率。”

    在传统的膜蒸馏中,热的含盐水流过片状膜的一侧,而冷却的过滤水流过另一侧。温差产生蒸汽压差,其驱使水蒸气从加热侧通过膜朝向较冷的较低压侧。扩大技术是困难的,因为膜的温差 - 以及由此产生的清洁水的输出 - 随着膜的尺寸增加而减小。赖斯的“纳米光子学太阳能膜蒸馏”(NESMD)技术通过使用光吸收纳米粒子将膜本身转变为太阳能驱动的加热元件来解决这个问题。

    Dongare及其同事,包括研究共同主要作者亚历山德罗·阿拉巴斯特里(Alessandro Alabastri),用低成本的市售纳米粒子涂覆其膜的顶层,这些纳米粒子旨在将80%以上的太阳能转化为热能。太阳能驱动的纳米颗粒加热降低了生产成本,赖斯工程师正在努力扩大该技术,以应用于无法获得电力的偏远地区。

    NESMD中使用的概念和粒子首先在2012年由LANP主任Naomi Halas和研究科学家Oara Neumann展示,他们都是新研究的共同作者。在本周的研究中,Halas,Dongare,Alabastri,Neumann和LANP物理学家Peter Nordlander发现他们可以利用入射光强度和蒸气压之间固有的,以前未被认识到的非线性关系。

    Alabastri是莱斯电气和计算机工程系的物理学家和德州仪器研究助理教授,他使用一个简单的数学例子来描述线性和非线性关系之间的差异。 “如果你取任何两个数字相等的10 - 7和3,5和5,6和4 - 如果你把它们加在一起你总会得到10。但如果这个过程是非线性的,你可能会将它们平方甚至立方体添加之前。所以如果我们有九个和一个,那就是九个平方,或者81个加一个平方,等于82.这远远好于10,这是你能用线性关系做的最好的。“

    在NESMD的情况下,非线性改进来自于将太阳光聚集成微小的斑点,就像孩子可能在晴天用放大镜一样。将光线集中在膜上的微小点上会导致热量的线性增加,但加热反过来会产生蒸汽压的非线性增加。并且增加的压力迫使更多纯化的蒸汽在更短的时间内通过膜。

    “我们发现,在更小的区域内拥有更多的光子总是比在整个膜上均匀分布光子更好,”Alabastri说。

    Halas是一位化学家和工程师,他花了超过25年的时间开创了光活化纳米材料的使用,他说:“这种非线性光学过程提供的效率非常重要,因为缺水是世界上大约一半人的日常现实,有效的太阳能蒸馏可以改变这种

    “除了水净化之外,这种非线性光学效应还可以改善利用太阳能加热来驱动光催化等化学过程的技术,”Halas说。

    例如,LANP正在开发一种铜基纳米颗粒,用于在环境压力下将氨转化为氢燃料。

    Halas是Stanley C. Moore电气和计算机工程教授,赖斯Smalley-Curl研究所所长,化学,生物工程,物理和天文学,材料科学和纳米工程教授。

    NESMD正在位于赖斯的纳米技术水处理中心(NEWT)开发,并于2018年获得能源部太阳能海水淡化计划的研发资金。

    ——文章发布于2019年6月18日

相关报告
  • 《德国Zonnewater太阳能海水淡化公司》

    • 来源专题:水体污染与防治领域信息门户
    • 编译者:徐慧芳
    • 发布时间:2006-03-27
    • Solar thermal systems e.g. fresh water out of seawater the re-invented solar-still. Increase the yield on salt ponds (marshes) with our evaporation accelerator. Waste water handling, evaporate the water and leave the heavy metals contained.
  • 《离子太阳能电池助力海水淡化》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2017-11-30
    •  现代太阳能电池可利用光能产生电子和电洞,然后由半导体材料传输到外部电路,供人们使用。但很少有人关注另一种由光能驱动的发电形式,即通过分解水分子得到带相反电荷的质子和氢氧化物。近日,美国研究人员在《焦耳》杂志上报道了一种新设计,它在发电和咸水淡化方面具有很好的应用前景。   该研究高级作者、加州大学欧文分校助理教授Shane Ardo表示,他们制作了一种“离子模拟的电子P-N结太阳能电池”,能利用光能激发水的半导体特性,从而产生离子电。他们希望利用该机理制造一种可以直接在阳光照射下进行海水淡化的设备。   在新研究中,研究人员将水通过两种离子交换膜,其中一种膜主要运输正电荷离子的质子,另一种主要运输负电荷离子,如氢氧化物,它们就像一对“化学门”使电荷分离。然后,研究人员再使用激光照射系统,使光敏的有机染料分子结合在膜上,继而解放质子。随后这些质子被运输到膜的酸性侧,产生最高可超过100 mV的离子电流(平均60 mV)。   尽管除了偶尔出现的超过100 mV阈值的情况,该双膜系统可达到的电流水平仍是其目前的主要限制。若要实现海水淡化,光伏电压必须被放大到200 mV,但是研究人员对实现此目标十分乐观。“了解水的特性,我们就能更好地设计这些双极膜界面,以最大限度地提高电压和电流。”Ardo说。   从长远来看,海水淡化只是研究人员开发的合成光驱动质子泵的应用之一。它也可能用于连接电子设备,为脑机接口提供信号,甚至能给一些结合了活体组织和人工回路的“人造细胞”提供能量。