《双碳背景下的能源新方案——生物质能》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2023-12-31
  • 在中国工程院发布的《中国可再生能源发展战略研究报告》中,目前我国含太阳能在内每年开采的清洁能源经过换算能源效率等于21.48亿吨标准煤。在清洁能源中生物质能占总量的54.5%,是整个清洁能源体系的重要组成部分。按照目前的能源发展来看,生物质能是仅次于煤炭、石油和天然气等化学能源外的第四大能源。

    根据国际能源署的预测,在2030年全球36%的能源消费或将来自可再生能源,其中生物质能将占到可再生能源部分的60%。生物质能或将成为双碳大背景下能源发展的新趋势。

    一、生物质能的概念

    生物质指的是指通过光合作用而成的各种有机体,包括所有的动植物和微生物。生物质存在于木材、稻草、种子废料、粪肥、废纸、生活垃圾、废水等各种材料中,属于全球范围内最广泛存在的物质。生物质能是通过生物质作为载体将太阳能储存于有机体,在通过自然界的循环实现能源的转换,据统计生物质目前储存的能量是世界能源消费总量的2倍,提升生物质能的转换效率对解决未来能源使用问题有重要意义。生物质能通过直接或间接的绿色植物的光合作用,一方面有效吸收大气中排放的二氧化碳,另一方面又将太阳能转化为常规的固态、液态和气态燃料,属于可再生能源的碳源。

    二、生物质能的优势

    1、可循环再生。生物质能作为可再生能源,具有天然的自我再生功能,可以保证能源长久持续的使用,有助于解决因有限的不可再生能源未来可能出现的能源危机。

    2、应用方式多样。生物质能既可直接使用,也可以利用转化工艺作为二次能源使用,还可通过生物、化学和物理方法转换成其他生物能源;

    3、零碳能源,保护环境。生物质能是二氧化碳中性,燃烧产生的二氧化碳量等于植物在生长过程中吸收的二氧化碳量,有助于减碳,且在转化过程的相比于其他方式硫化物、氮化物和粉尘等的排放更少。

    三、生物质能发电

    基于目前能源体系的构建,电能是目前使用占比较大的一种能源形式。在生物质能的应用中,生物质能发电是具有一定发展前景的一种能源使用方式,生物质能发电是通过运用生物质及其加工转化成的固体、液体、气体的生物质能燃料而实现的一种热力发电技术,目前主要分为直接燃烧发电、甲醇发电、城市垃圾发电和沼气发电四种。

    1、直接燃烧发电

    直接燃烧发电是先采用专门的生物质工业锅炉将生物质压缩成密度较大、性能接近煤的成型燃料,然后将生物质原料送入适合生物质燃烧的特定蒸汽锅炉中,燃烧产生的热量将水转换为水蒸汽,再通过水蒸汽带动汽轮机,从而驱动蒸汽机转动,最后再带动发电机发电。

    直接燃烧发电的工作原理同燃煤火力发电原理相同,两者的区别主要体现在燃料上,火力发电的原料是煤,而直接燃烧发电的原料主要是农林废弃物和秸秆,同烧煤相比,生物质锅炉排放的碳排放量会更低,又助于实现发电过程中的减碳。

    直接燃烧发电是快速直接利用生物质能的方法,但由于生物燃料密度相比于化石燃料较低,燃料效率和发热量都不如化石燃料,所以目前大多数应用于生物废弃物的回收再利用。目前,在生物质能技术相对比较成熟的国家,生物质能的燃烧发电占可再生能源发电量的70%,目前像一些糖厂榨糖后的原料就被利用于生物质能的发电。

    2、甲醇发电

    除了传统的秸秆、木屑等农产品原料,甲醇发电目前也是生物质能发电的一种选择方式,因其发电成本逐步下降,污染较低且液态状态易储存的原因,被认为具有较高的发展前景。

    甲醇发电的工作原理是先将甲醇加热使其气化,气化的甲醇通过水蒸汽发生化学反应产生氢气,再以氢气为燃料,在燃烧室中燃烧生成燃气,通过燃气驱动燃气轮机带动发电机组发电。

    3、城市垃圾发电

    城市垃圾发电的工作原理是通过特殊的焚烧锅炉燃烧城市固体垃圾,再通过蒸汽轮机发电机组发电。其中焚烧垃圾产生的高温烟气在余热锅炉中进行热交换,产生过热蒸汽,推动汽轮发电机组产生电能,实现生活垃圾的回收再利用,一方面缓解了城市垃圾过多带来的环境问题,另一方面也为城市提供了一定的能源输送。

    4、沼气发电

    沼气发电的工作原理以沼气作为燃料产生动力来驱动发电机产生电能,是目前沼气大型化利用的一种方式。在沼气发电流程中,生物质原料经气化器形成沼气,再经脱硫器由贮气罐供给燃气发电机组,从而驱动与沼气涡轮机相连接的发电机而产生电力。需要的主要设备有沼气发电机组、发电机和热回收装置,目前沼气利用主要集中在养殖业、工业等领域,通过充分利用资源实现循环经济的综合性发展。

    四、国内生物质能的发展现状以及前景

    中国拥有丰富的生物质能资源,据测算理论总量有50亿吨左右。2021年中国生物质能发电累计装机量为3798万千瓦,新增装机为808万千瓦,同比2020年上涨48.80%。据统计,截至2021年底,我国生物质能发电累计装机容量占可再生能源发电装机容量的3.6%。从目前的装机容量看,相比于我国丰富的生物质能资源,生物质能资源的使用率并不高。随着生我国2030年碳达峰和2060年的碳中和目标的实施,生物质能未来会有更大的需求。在产业政策不断完善和生物质能技术不断提高下,未来生物质能的应用或迎来新的发展机遇。

  • 原文来源:https://newenergy.in-en.com/html/newenergy-2429597.shtml
相关报告
  • 《碳中和背景下的生物质能发展新机遇》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-07-04
    • 5月10日,国家发改委发布了《“十四五”生物经济发展规划》。作为中国首部生物经济五年规划,其明确提出,要积极开发生物质能源,在生物质发电、热电联产、生物质燃料方面推动生物质能技术的发展和应用,推动化石能源向绿色低碳可再生能源转型。随后不久,6月1日发布的《“十四五”可再生能源发展规划》进一步提出,要推进生物质能多元化开发。在此背景下,明确生物质能自身的优势特点、厘清生物质能规模化商业化发展所面临的问题非常重要;同时,找准生物质能在未来能源系统中的角色定位,并且做好对生物质能发展现状、技术应用等问题的研判,有助于推动生物质能抓住新的发展机遇,在“十四五”时期实现高质量发展。 生物质能在“热-电”、储能上有独特优势,并能带来“负碳”机会 生物质是一种生态友好的零碳能源,与当下其他商业化利用的能源相比,具有明显的优势。 第一,生物质能环境外部性较低,利于实现循环经济。比如,生物质发电为处理利用农林废弃物提供了一种有效方式,有助于减少秸秆露天焚烧及其所带来的环境污染。此过程中,生物质燃烧后产生的灰渣还可作为有机肥料使用,从而实现农林废弃物的循环利用、“变废为宝”。此外,工业生产中推动生物质燃料替代煤炭也是一种生物质资源再利用的方式,并有助于实现工业领域的碳减排。 第二,生物质能的利用,可以同时解决电和热的问题,这是风电、光伏发电等其他可再生能源利用形式不具备的优势。由于技术、用地的限制以及风光水可再生能源的特性,未来中国集中大规模地采用热泵技术通过电气化的方式解决供暖问题,目前看仍面临诸多挑战。因此,另一种可能性是未来的新型电力系统中仍保留一部分火电,并使其同时供热(下文将展开论及)。那么,在此情景下,生物质能将同时在供电供热中发挥作用,并且显现出其零碳的优势。 第三,生物质可助力解决不同时间尺度的储能问题,为构建以可再生能源为主体的、安全稳定的新型电力系统提供支撑。就此而言,生物质可以作为解决不同时间尺度储能问题的能源选择,包括小时级、跨天、跨周甚至是跨季节的。 第四,生物质带来了实现负碳的机会,有助于大力推动乡村振兴。生物质资源在其生长过程中有效吸收了大气中的二氧化碳,虽然作为燃料或工业原料的过程中会把二氧化碳排放到大气中,但从全周期的角度来说可以实现二氧化碳的“净零”排放。在此基础上,如果结合CCS技术,将其排放的二氧化碳捕集并封存,则能够实现宝贵的二氧化碳的“负排放”,这无疑会助力碳中和目标的实现。这样的背景之下,可以预见,生物质产业的进一步发展将会带动乡村经济增长、助力消除农村能源贫困问题,实现乡村振兴。 面临规模化商业化瓶颈,需抓住“碳中和”机遇有所突破 生物质在中国并非新生事物,已经历了一定时间的发展。然而,截至目前,中国生物质产业发展规模仍然有限。以电力行业为例,根据国家能源局的信息,截至2021年底,中国生物质能发电装机达3798万千瓦 ,仅占可再生能源发电装机总量的约3.6%;相比之下,风电和光伏发电装机已分别达到3.28亿千瓦和3.06亿千瓦。究其根本,有两方面的原因值得探讨: 一是多方面因素的限制导致生物质并没有形成大规模的商业化。与已经能够实现集中式、规模化利用的煤炭、汽油、天然气、风能、太阳能等能源不同,生物质资源的规模化利用面临资源分布散、范围广、堆积密度较低等制约因素,使得其收集、储存、加工、运输同其他能源存在很大不同、更具难度,因而尚未形成完整的产业链,商业化规模不够。从生物质的本身属性看,与煤炭、石油、天然气等化石能源相比,生物质的能量密度比较低,所以同等体积或质量所能产生的热量亦相对较低;从可得性与规模性看,生物质资源的分布相对分散、范围广而且很难直接拿来即用,因而导致其收集、储存、加工、运输的成本较高,阻碍了完整产业链的形成,限制了规模化的发展;从技术来看,当前在中国,生物质先进技术的利用总体处于不够成熟的阶段。发达国家在生物质资源利用和产品制造领域具有明显先发优势,核心技术的垄断使得中国对生物质转化利用的很多关键技术和关键设备都依赖进口;从政策上看,长期以来,鼓励政策与激励措施缺位,加之一些早期示范项目以失败告终,也使得生物质能没能像其他可再生能源一样获得应有的政策扶植与更多的市场信心。综上,自身属性、集储效率、运输成本、技术设备、政策措施、市场信心等各方面因素综合作用下,生物质能发展面临产业成本高、规模化生产有限的问题,尚未形成大规模的商业化应用。 二是生物质能此前并没有遇到变革性的大发展机遇。碳中和目标的确立给未来中国能源发展提出了巨大且紧迫的系统性变革的要求,这种系统性变革则为生物质能的进一步开发和利用提供了难得的契机。烧柴做饭是人类对生物质能最原始的利用,根据能源阶梯理论,此阶段利用的生物质能处于能源阶梯的最低一级“初始能源”,在其之上阶梯的则是“转型能源”(木炭、煤炭、煤油)、“优质能源”(电力、液化石油气/天然气、沼气)。然而,在碳中和带来的机遇之下,生物质将可能以不同的形式出现在不同的应用场景中,它在能源品种的阶梯上很可能会实现等级的跨越。尤其是在未来清洁电力、热电联供这两者的共同需求之下,生物质能不仅可以助力清洁发电与清洁供热,更有机会实现负碳排放。在碳中和背景下,生物质能发挥作用的舞台必将更加广大。 生物质能在电力与热力的清洁供应上具有独特作用,不应简单与风光作比较 首先,从性质上来讲,生物质能与风能、太阳能有根本的不同,因而其在电力系统中的作用也会不同。在未来,生物质能并不是要简单追求在整个电力系统中贡献的发电量比例达到多高,而是要在系统中扮演独特的角色。 可再生能源的间歇性特点将会给以风、光为主的新型电力系统的稳定性带来一定挑战。比如,一旦连续几天没有风,或者持续阴天,再抑或赶上冬天枯水期,系统稳定性的问题将凸显出来。当前的电化学储能技术只能应付小时级的削峰填谷,更长时间尺度的储能问题尚未找到在经济性和技术可行性上都已成熟的零碳解决方案。因而,为了电力系统的稳定性,需要保留一定比例的火电——在当前已有和可预见的技术条件背景下,各界在这一点上基本是有共识的。那么,进一步的问题将是,这部分火电的燃料来源是什么?如果以未来零碳的情形作为出发点,可能的选择则包括:煤电加CCS/CCUS(碳捕获与封存/利用),或用绿氢来替代煤,再或者用生物质替代煤。 这也是为什么说生物质能的经济可行性,需要与CCUS、氢能在跨季节储能的利用等技术的经济可行性进行比较。生物质能要承担的任务是在未来的新型电力系统中解决风、光发电所带来的不稳定性问题。目前看,这个问题是电化学储能、抽水蓄能暂时无法解决的。 除了发电外,生物质另一个独特的角色在于供热。供热是实现碳中和过程中最难解决的问题之一。它直接关乎民生,能源需求量极大,必须稳定且有保障。碳中和背景下,未来北方地区的供热问题如何解决,目前的讨论主要涉及两种方式:一种是考虑集中式的供热,用可再生能源发的电通过热泵来供热;另一种是保留现有的热网,如此则仍需保留一部分火电。 目前来看,第一种方式面临几方面的挑战:一是中国的城市人口密度很大,尤其在冬天,即光伏发电与水电处于低谷的时期,可能需要增加非常多的装机量,才能保证供暖所需的电力供给,而这可能会使得电网不堪重负;二是在现有的技术条件下,城市没有足够多的土地空间来安装集中的供热热泵;三是在这种情况下,热网等基础设施存在在未来变为沉没资产的风险。 虽然我们对电气化抱有很高期待,也在南方和北方的农村及小城镇大力支持相关工作。但笔者认为,基于中国的国情,在人口集中的北方大中城市,第二种方式更有可行性优势,即——将来新型电力系统中还需要一部分火电,同时这部分火电还可以发挥供热的作用。在此过程中,生物质能将有机会在供电供热两方面都发挥其零碳的优势。 因此,生物质能在未来整个的新型电力系统中,未必会贡献最大比例的发电量,但它在电力和热力的清洁供应上一定可以发挥独特而关键的作用。 应推动生物质能多元化开发利用 生物质能的开发利用具有多元性。生物质发电是最成熟、发展规模最大的现代生物质能利用技术,北欧国家、德国及美国处于世界领先水平。中国的生物质发电起步较晚,当前发展规模仍然有限。如上文提及,截至2021年底,我国生物质发电累计装机达3798万千瓦,占可再生能源发电装机总量的约3.6%,生物质发电量为1637亿千瓦时,占可再生能源发电总量的约6.6%。从生物质发电累计并网装机情况来看,我国当前以垃圾焚烧发电、农林生物质发电为主,沼气发电仅占3%左右。生物质发电的技术分类丰富,包括直接燃烧、混合燃烧、垃圾焚烧、沼气、气化发电等。在生物质能发电技术应用的初期,有必要推动多元化的开发及试点工程,这样有利于摸清不同生物质发电技术在不同应用场景下的作用和优劣势,进而能够因地制宜地推动生物质发电技术不同场景下的规模化应用。与此同时,未来如果能够规模化应用BECCS(生物能源与碳捕获和储存)技术,生物质发电将可能创造负碳排放,从而可以为实现碳中和目标做出巨大贡献。 生物质清洁供暖是另一个颇具潜力的应用场景。如上所述,生物质能在提供清洁电力和清洁热力方面具有独特优势,因而在未来,一方面可以因地制宜推动生物质发电向热电联产转型升级,另一方面可发展以农林生物质、生物质成型燃料等为主的生物质锅炉,为人口密集的大中城市及城镇区域提供集中供暖。就生物质固体成型燃料技术而言,欧美处于全球领跑水平,这主要得益于其标准体系较为完善,并形成了从原料收集、储藏、预处理到成型燃料生产、配送和应用的整个产业链。欧洲是生物质成型燃料的主要消费地区,其中瑞典生物质成型燃料供热约占其供热能源消费总量的70% 。这显示出,建立完整产业链的重要性以及生物质能在清洁供暖中的巨大潜力。 当前,生物液体燃料已成为最具发展潜力的替代燃料,在电气化无法解决的交通动力领域,生物液体燃料提供了宝贵的零碳解决方案。在生物柴油领域,我国相关行业技术在国际上处于第一梯队,是位居美国之后的全球生物柴油第二大技术来源国,中国生物柴油专利申请量的全球占比为17%(截至2021年9月)。2021年我国生物柴油产量约150万吨,占全球产量约3.6%,位于欧盟、印尼、美国、巴西等经济体之后。在生物航油技术上,我国已经取得了突破,实现了生物质中半纤维素和纤维素共转化合成生物航空燃油,目前已在国际上率先进入示范应用阶段。此外,二代乙醇作为车用及航空燃料,生物甲醇、绿氨作为车用及船运燃料(尤其是远洋),都是生物液体燃料在未来具有潜力的应用场景,相关技术正处于突破或试验阶段。在此方面,《“十四五”可再生能源发展规划》提出要支持生物质液体燃料领域的先进技术装备研发和推广使用,将推动不同场景下的生物液体燃料技术加速从“试验”到“应用”的突破。 生物天然气是电力、供热、交通等领域可以利用的一种重要零碳能源。早在2019年,国家发改委、国家能源局等十部委联合下发的《关于促进生物天然气产业化发展的指导意见》就提出,到2030年生物天然气年产量超过200亿立方米的目标。据相关测算,我国生物天然气每年生物天然气可开发潜力高达600亿立方米,但是截至2020年,我国实际年产生物天然气不到1亿立方米。这显示出我国生物天然气的发展仍然处在起步阶段,同时也意味着巨大的潜力。亦如《“十四五”可再生能源发展规划》所提出的,应当有效利用好我国农林养殖业资源丰富的优势,将粮林畜集中生产区统筹协调,建立以县域为单位的产业体系,积极开展生物天然气示范项目。此过程中,筹建较大尺度(千万立方米级)的生物天然气工程非常必要,如此可以通过同城市燃气管网并网、多元化应用(车辆、锅炉、发电),大大促进生物天然气的规模化利用,加速能源系统的脱碳进程。 生物质能的多元开发利用对于实现乡村振兴意义重大。如《“十四五”可再生能源发展规划》所提及,加大生物质能的开发利用,提高农林废弃物资源化利用率,将助力农村人居环境整治提升;生物质能及其他可再生能源在取暖工程中的利用,有助于改善乡村供暖条件,并助力城乡融合的清洁供暖体系的构建;建设以生物质成型燃料加工站或物质锅炉等为主的乡村能源站,则可实现乡村可再生能源资源的集约开发和高效运营管理;建设大尺度的生物天然气工程,也将有助于带动农村有机废弃物处理、有机肥生产和消费、清洁燃气利用的循环产业体系建立——这些均为消除乡村能源贫困、扩大乡村可再生能源的综合利用,以及推动乡村社会经济可持续发展带来新的机遇。 生物质能发展仍需更多行业研判 去年,《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》以及《2030年前碳达峰行动方案》等文件,都提到了积极推进生物质能的发展;《中共中央 国务院关于做好2022年全面推进乡村振兴重点工作的意见》也提到,要“推进农村光伏、生物质能等清洁能源建设”。在此基础上,今年5月由国家发改委发布的《“十四五”生物经济发展规划》,连同6月由九部委联合发布的《“十四五”可再生能源发展规划》,也都对生物质能源的发展提出了具体工作重点和发展目标。这一系列相关政策文件的出台对于未来生物质的利用和发展无疑是非常利好的信号,也说明从各个角度、各个领域,生物质能作为一个产业所受到的重视程度在不断提升。然而,要指出的是,虽然国家层面的很多文件为生物质能发展指明了大方向,但多为定性的方面,对于未来生物质能发展的研判仍然需要更多量化的分析与研究。 从生物质资源的可获取性上看,中国一年的能源消耗大约是50多亿吨标准煤,此背景下生物质能源的利用潜力如何,目前并没有很好地形成共识。由中国产业发展促进会生物质能分会等机构编制的《3060零碳生物质能发展潜力蓝皮书》显示,当前我国生物质资源作为能源利用的开发潜力约为4.6亿吨标准煤。基于与清华的联合研究,能源基金会近期发布的《农村清洁用能体系助力减污降碳及乡村振兴——中国农村散煤治理综合报告》显示,全国可利用的各类别生物质能源资源总计约合9.28亿吨标准煤。在此基础上,不同类型的生物质资源的收集成本、可开发性如何?此外,我们还需要更细致地去评估它们的商业化利用等级。 从定位上看,还需要进一步分析研判,未来新型电力系统中托底保供的电力需求是多少?火电的需求是多少?这些火电由什么燃料来提供?它与供热之间是什么关系? 从技术上看,生物质利用的技术繁多,这些不同技术的具体应用场景分别是什么,潜力如何?不同技术中哪些是更先进的,哪些有助于提升农民收入与生活质量,能够助力乡村振兴战略并有效支撑碳中和战略? 从商业模式上看,之前生物质能无法大规模商业化的症结之一,是在商业模式和可支付性方面带来的财务不可持续问题,未来如果成本下降的话,或者说如果国家政策也像此前推动风电、光伏发电一样支持生物质能发展,那么商业模式和投融资模式是否就一定能够形成?其他的影响因素还有哪些? 以上这一系列问题都需要我们进一步地深入分析与研究。目前,能源基金会也正在推动一些相关的工作,包括:支持农村散煤的生物质替代的研究,对生物质利用技术以及试点工作进行梳理,并希望在此基础上为生物质能未来的发展提出建议。此外,我们也正在开展生物质在未来新型电力系统中的定位研究,以及推动有关生物质利用的试点示范、商业模式的探讨等。 当前,从政策的角度来看,《“十四五”生物经济发展规划》、《“十四五”可再生能源发展规划》已经为生物质能的发展指明了大的方向,但就具体的政策激励措施而言,目前可能还未到密集出台阶段,总体上还处于前期研判期。但我们有理由相信,政策支持力度的不断加大,可以积极推动一些试点及示范项目的落地,这对于生物质能在碳中和背景下的新发展意义重大,值得进一步期待。
  • 《江亿:生物质是未来零碳能源系统中最重要的燃料》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-12-17
    • 12月6日,“发展零碳能源,共建生态家园”——2021(第三届)全球生物质能创新发展高峰论坛(下称“高峰论坛”)顺利开幕。本论坛由中国产业发展促进会生物质能产业分会、中国农业大学、国际能源署生物质能中国组联合主办,作为国内目前层次最高、规模最大的生物质能论坛,高峰论坛吸引了多位政府领导、国内外业界专家出席。 与会期间,中国工程院院士、清华大学江亿教授受邀出席,并以《生物质能源:零碳能源系统中最重要的燃料》为题做出精彩演讲,相关内容特别整理如下: 第三届全球生物质能创新发展高峰论坛是一次非常重要的会议,无论从学术上还是从推动“双碳”工作的角度上,都有重要意义。对于本次会议的成功召开,我表示热烈祝贺。在这次与大家交流的机会中,我想要分享一个观点:即未来零碳能源系统中,生物质能源是最重要的燃料。 当下,人类正面临着一个共同的任务,就是能源结构调整,以解决全球气候变化的问题。这个任务的中心是“由以燃煤燃油燃气为基础的化石能源结构转为以风电、光电、水电、核电为主的零碳能源结构”。而在未来新的能源结构里,可以找到的唯一的零碳燃料,就是生物质燃料。以这个角度来看待生物质能,生物质的意义就非同小可了。因为未来其他能源都是电,没有燃料,但维持社会经济运行,必须需要燃料。即便是电力系统,也不能完全依靠风、光、水、核电,必须有一部分调峰的热电,这就要靠燃料来支撑。与此同时,有些工业生产过程也需要燃料,如工业窑炉等等,就需要固体或气体燃料。这些燃料,是未来零碳社会必须的,它们从哪来?很重要的解决方案就是依赖颗粒化的生物质燃料和生物质燃气。那么我们有多少生物质燃料呢?比较激进的分析数据是,将我国农作物的秸秆、稻壳、玉米芯、花生壳等农产品初加工剩余物,林业枝条和木材等加工废弃物,每年禽畜粪便,以及城市绿化垃圾、厨余垃圾等生物质来源加在一起,会生产出总量约10亿吨标煤/年的生物质燃料。当然,也有些保守的分析认为未来会产生总量约5亿吨标煤/年的生物质燃料。所以我认为5至10亿吨标煤/年的生物质燃料是一个科学的范围,这对能源系统来说,已经是一个很大的量了。接下来我们谈一下消纳问题。为什么说消纳呢?因为无论是秸秆还是粪便、餐厨垃圾,这些都不是传统意义上的能源,即便你不想要开发利用,它们都会因为别的社会活动而产生,所以就必须把它们消纳掉,也就是处理掉。这就产生了问题,到底采用什么方式消纳更好?不同消纳方式对环境、气候、碳排放都有不同的影响,而且较为复杂。我们需要找到对环境影响最小、对实现“双碳”目标贡献最大的消纳形式。 对于生物质,我们普遍认为是零碳的,但是不同的消纳方式都会产生氧化亚氮还有甲烷,这两种气体属于非二氧化碳温室气体,而且比二氧化碳产生的温室效应更厉害。人类社会要缓解气候变化,中国要实现碳中和,这就不止是整治二氧化碳了,也要解决其他温室气体的排放问题,我国提出的碳中和目标,包括对非二温室气体的中和。在中国生物质消纳方式中,水稻秸秆还田产生的非二氧化碳温室气体占我国的非二温室气体排放中的很大比例。因此,怎样处理消纳秸秆,使其排放最少,是实现碳中和这一目标中必须面对和解决的重要任务。比如说,用堆肥方式来处理秸秆的话,其甲烷+氧化亚氮的排放,每公斤产生接近1200g 的等效二氧化碳,所以堆肥虽然能补充有机肥,但是对于气候影响还是较为严重的。如果不堆肥,而是做成沼气,然后用沼渣、沼液再来补充有机肥,就不会有这么多的非二氧化碳温室气体排放了。 另一方面,用沼气发酵做成的生物燃气,还可以顶替作为化石能源的常规天然气,所以秸秆制燃气就比直接堆肥更具有减排效益。 此外,将秸秆做成成型燃料,1吨就等于0.5吨标煤,此时再燃烧就不会产生非二气体排放了。而这时产生的二氧化碳是庄稼生长过程中通过光合作用从大气中固化而来,不需要计算在碳排放中,这样就秸秆制成的成型燃料就成为零碳燃料。 但是有人说,堆肥是有机肥,还可以替代天然气制造的合成氨,合成氨也有温室气体排放因子。我们有分析,即使考虑到等效力合成氨的替代,即用堆肥去替代天然气制造合成氨,最后的结果也是增加了排放,达不到减排的目的。而制备生物燃气过程中产生的沼渣沼液进一步加工后又可成为优质有机肥,替代合成氨,产生减碳效果。 所以,从碳中和角度看待生物质的合理化消纳,最好的方式是——对于干生物质,就是先制成成型燃料,再燃烧,整个过程就不再有非二气体排放;对于湿生物质来说,就是沼气发酵,再分离出二氧化碳,利用或填埋这部分二氧化碳,剩下的甲烷是生物燃气,沼渣、沼液是有机肥,可以顶替一部分化肥,这么综合起来,可能就是最好的处理方式。 在此背景下,欧洲这些年做的碳中和规划,各国基本是要在2050年前实现碳中和,在他们的规划里,生物质能有非常大的作用。如丹麦、瑞典,这些国家生物质资源丰富,生物质能在规划的未来总能源中承担30%到40%,这样,就解决了零碳燃料从哪来的问题。 在欧洲,生物质颗粒燃料为他们的采暖做出特别大的贡献,相对中国来说,咱们不管是城市还是农村,近些大量依靠煤改气、煤改电解决采暖问题,煤改生物质比例比欧洲都要小得多。 除了颗粒燃料之外,欧洲还制取沼气,从沼气处理中得到生物质燃气和生物质柴油,这些他们都做了很好的探索,而且在他们未来的燃料构成中真正占有很大比例。 我们再看看中国怎么做。 这些年,经过大规模农村资源普查,我们得到一个结论,即尽管农村建筑规模不大,但是屋顶面积特别大,包括住房、粮房、仓库、猪圈等,把这些屋顶装上光伏,充分开发利用起来,装机容量几乎可以达到20亿千瓦,全年发电量可达到3万亿kWh, 这远大于目前我国农村的全年用电量。于是,可以考虑:是否应该发展以屋顶光伏为基础的全部电气化的农村新能源系统,靠光伏电力解决农村的全部用能?在山西芮城,就有一个代表性模式。 通过这一方式,农村靠光伏就可以满足农民的生活、生产和交通用能,替代了煤、油、气和柴禾。如此一来,面对自然生产出的生物质资源,就可以好好把它们加工成商品化生物质燃料,进入市场。也就是说,农村应该以能源商品为目的,面向能源市场,全面开发各类生物质燃料,把光留给自己,满足自己的能源需求,把生物质变成燃料,推向市场,形成新的经济增长点。为什么要留下光电,发展商品化生物质燃料?因为把这些可能的能源都算上,农村可产出的能源远高于其需要的能源,农村就从以前的能源消费者转为新的零碳能源的提供者。而作为输出的能源,其可储存性、可运输性、可灵活使用性都非常重要。与生物质燃料比,光伏电力的可储存性、可运输性和可灵活使用性都差。也就是说,加工好的生物质燃料更有利于储存、运输、和灵活应用,因此应优先作为输出的商品化燃料,而电力在这些方面相对不足,应优先自用。 现有数据是:颗粒型,如玉米秸秆、果树枝条,加工后市价在1000元/吨;大块型,如麦秸、稻草,加工后市价约500~700元/吨;规模化制作沼气,再分离出CO2,成为优质生物燃气。沼渣沼液是优质有机肥,加工后全过程的综合能源效率从目前的10~15%提高到40%以上。 所以我们要强调生物质能源的商品化,通过商品化和金融支持,促进生物质能的充分利用。以前生物质为什么总发展不好,就是因为我们太强调生物质优先自用了。那些秸秆还要制成颗粒,然后再烧,有这些功夫,还不如直接烧了,这就是为什么这些年生物质能源总不能全面充分地应用和推广。一斤小麦目前大约是1元钱,其秸秆收集起来,加工后,弄好了也可以卖0.5元。农民非常辛苦地把每一粒麦子都采集回来,拿到市场上去卖,为了这1块钱,为什么就看不上可以卖0,5元的秸秆?所以关键是没形成市场,不知道它可以卖。秸秆就应该和长在上面的麦粒一样,被珍惜,成为农业产出的重要部分。 另外,生物质材料加工为商品能源的主要成本是加工耗电,这可能也是以前发展商品化生物质燃料的障碍。而现在屋顶光伏又可以提供充足廉价的电力,光伏和生物质结合,对生物质的利用大有好处。 由此来说,我们就要建立以屋顶光伏为基础的农村新型能源系统,实现全面电气化,替代所有的化石能源。全面解决环境、固废、健康问题,置换出生物质能源,与光伏电力合作制成零碳燃料,供应能源市场,给农区、林区农民增加新的收入来源,实现农村土地粮食和能源的“双生产双输出”,成为我国解决三农问题的重要措施。 下沉到生物质发展方向来说,就是发展商品化生物质燃料,用来替代化石燃料,减少化石能源燃烧产生的直接碳排放。推广沼气集中供气工程,实现各类可发酵有机废弃物的消纳,尤其应在水稻秸秆资源丰富的地区,通过将稻草进行有组织的集中式发酵生产生物天然气,解决直接还田所带来的温室气体无组织排放问题,但应加大CH4的回收率,减少使用过程中的泄漏。