《发现“线粒体闪烁”启动细胞核重编程的全新模式》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-10-16
  •         8月30日,国际著名学术杂志《细胞·代谢》(Cell Metabolism)在线发表了中国科学院广州生物医药与健康研究院刘兴国研究组的最新研究成果“Short-term Mitochondrial Permeability Transition Pore Opening Modulates Histone Lysine Methylation at the Early Phase of Somatic Cell Reprogramming”(线粒体通透转换孔短时开放调控组蛋白甲基化启动体细胞重编程)。该研究发现在体细胞重编程为诱导多能干细胞(iPSC)的早期,线粒体通透转换孔(Mitochondrial Permeability Transition Pore,mPTP)短时开放,这一开放通过调控细胞核内组蛋白甲基化的表观遗传学变化促进重编程。这是线粒体孔道通过表观遗传来调控细胞命运的首次报道。

      线粒体在多能性干细胞命运中发挥重要作用。与体细胞相比,多能干细胞的线粒体数目少,内嵴退化,因此在多能性获得过程中线粒体的形态结构发生重塑(Xingguo Liu*, Autophagy, 2017)。功能方面,国际上的研究多集中在线粒体代谢,许多代谢中间产物可调控表观遗传学修饰, 进而决定多能干细胞命运。刘兴国研究组另辟蹊径,在2016年的《Cell Metabolism》报道了线粒体离子信号“线粒体炫”(mitoflash)通过DNA去甲基化调控重编程。在线粒体离子信号调控表观遗传的崭新方向,刘兴国组进行了持续的深入研究,本工作聚焦于线粒体与细胞质交流的重要孔道---线粒体通透转换孔,揭示了细胞质调控细胞核的全新模式。

      线粒体通透转换孔是存在于线粒体内外膜之间的一组蛋白复合体,是一种非特异性通道。这些孔道零星的点缀在线粒体上,有袅娜的开放的,有羞涩的关闭着的;正如碧天里的星星,又如那善睐的明眸。孔道的开与关确是至关重要的,使细胞亦死亦生:永久开放导致细胞死亡(Xingguo Liu*, Hepatology, 2015) ;瞬时开放使分子质量 < 1. 5 KD 的物质自由通过调控细胞生理和发育。线粒体通透转换孔的瞬时开放,又称为“线粒体闪烁”(mitochondrial flicker),然而其是否及怎样调控细胞核的表观遗传,一直不清楚。

      体细胞重编程技术不仅极大推动了再生医学的发展,也为细胞命运决定的机理研究提供了一个理想的模型。刘兴国组通过这一模型利用钙黄绿素/钴技术实时观测了线粒体通透转换孔的开放程度,惊奇地发现在Yamanaka因子加入体细胞的早期,该孔道开放性骤然升高,随后迅速降低。这一高开放性是缘于瞬时开放的“线粒体闪烁”频率的骤增,有利于体细胞重编程为诱导多能干细胞。系统性的组蛋白甲基化检测发现“线粒体闪烁”能特异导致H3K9me2和H3K27me3(重编程的两大障碍)发生明显的去甲基化,并且降低两者对多能性基因的结合。进一步的机制研究表明,“线粒体闪烁”通过量和质的双重通路调控H3K9me2和H3K27me3的甲基化水平:一是通过miR-101c促进组蛋白去甲基化酶PHF8的表达;二是提高组蛋白甲基化的附基——alpha-酮戊二酸的量。

      线粒体和细胞核是哺乳动物细胞中含有遗传物质的两个细胞器,两者的相互交流对于细胞命运至关重要。该研究首次揭示线粒体的通透转换孔的激活,特异打开细胞核重编程的组蛋白甲基化障碍;如同线粒体的明眸善睐,一横秋波打开了细胞核“返老还童”的青春之门。这一发现是线粒体信号调控细胞核表观遗传的一个全新模式,在细胞转化与个体发育中均可能发挥重要作用,而且为细胞命运转换的技术开发提供了新的思路。

      本研究获得国家重点研发项目、中国科学院、国家自然科学基金、广东省和广州市的经费支持。

相关报告
  • 《述评 | 细胞化学重编程》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-09-28
    • 2023年8月7日,浙江大学祝赛勇团队在Nature Cell Biology上发表题为A fast chemical reprogramming system promotes cell identity transition through a diapause-like state的论文。该研究通过大规模的小分子筛选,对重编程步骤加以进一步细分,让化学重编程的速率得到大幅提升,甚至接近转录因子重编程的速率,借此提供了一个全新的快速化学重编程体系(FCR,fast chemical reprogramming)。 一方面,这有助于探索化学重编程乃至细胞命运重塑的机制;另一方面,他们也成功找到多个调控细胞命运转换的小分子药物,从而有望用于再生、抗纤维化甚至抗衰老。其中,FCR 的建立能够极大加速对于细胞命运决定与转换分子机制的研究。多能性重编程作为细胞命运调控的核心体系,对其进行深入研究和理解,可以揭示细胞命运决定与细胞命运转换的底层逻辑,从而破解细胞身份密码、逆转发育时钟,有望实现多重应用场景。就重编程技术本身而言,此次筛选出来的小分子有望促进人细胞化学重编程或其他细胞类型之间的转变,从而帮助获得效率更高、质量更高的种子细胞或功能细胞,进而用于再生医学、疾病建模和药物筛选。此外,就小分子本身而言,其中一部分小分子或小分子鸡尾酒可以提高细胞的可塑性,故可用于向损伤部位进行局部用药,通过刺激细胞再生来实现治疗目的。同时,基于细胞重编程原理衍生的抗衰老应用也很值得期待。 化学重编程有何不同? 细胞重编程,是细胞生物学和发育生物学的核心科学问题之一,近百年以来,该领域诞生了众多激动人心的划时代科技进展,比如克隆、诱导多能干细胞、化学重编程等。目前,人们对于细胞重编程分子机理的认知仍然存在很多不清晰的地方。虽然传统转录因子重编程和化学因子重编程的起点和终点是一致的,例如从皮肤细胞重编程到诱导多能干细胞(Induced pluripotent stem cell, iPSC)。但是,传统转录因子重编程和化学因子重编程两者之间的路径却不尽相同。打个比方,一个人从杭州到北京,既可以通过京杭大运河坐船到达,也可以乘飞机或坐高铁。转录因子重编程,采用直接过表达外源多能性转录因子的方式,比如 Oct4、Sox2、Klf4、c-Myc 等转录因子。这些转录因子具有结合 DNA 能力,会结合到基因组的很多位点,从而能够关闭起始细胞的基因表达网络,同时能激活内源的多能性基因表达网络,进而实现 iPSC 的诱导。而化学重编程使用的是靶向信号通路、表观遗传和细胞代谢的化学小分子组合,借此模拟外界环境的刺激,进而逐步激活内源多能性基因表达网络。当利用这种手段时, 细胞的命运重塑较为曲折。也有观点认为,化学重编程与蝾螈等肢体再生过程十分类似。 而该团队提出的快速化学重编程(Fast chemical reprogramming, FCR)体系,其基于更加精准动态的诱导方式,总共采用 6 步法。当采用这种方法时,该课题组观察到很多早期发育相关基因会被激活,进而参与目标细胞的基因激活、以及细胞命运的转换过程,这一过程更加类似于发育程序的细胞身份转变。 化学重编程发展现状如何? 从技术角度而言,化学重编程已被证明是可行的,并且能够用于不同胚层来源细胞或用于不同遗传背景的细胞。而该团队此次提出的新方法,首次实现并证明化学重编程在速率上能够接近传统转录因子重编程。从机制角度而言,此前已有研究报道过化学重编程的单细胞转录组数据或表观组数据。而本次研究则系统性地整合了转录组学、以及包括多个组蛋白修饰和 DNA 甲基化修饰的表观组学数据,从宏观层面为化学重编程机制研究打下了基础。然而,由于小分子靶点的多样性以及细胞命运重塑的复杂性,多个小分子组合到底以怎样的方式产生协同作用?以及如何正确地将细胞引向多能性重编程?对于背后的具体机制,学界依然不甚清晰。目前,化学重编程实验的对象主要是小鼠成纤维细胞,所以该类实验需要在细胞水平进行。由于技术原因、以及动物体内环境的复杂性,当前很难在动物体内实现精准的小分子组合靶向递送。有意思的是,早年已有学者利用转录因子,在小鼠体内进行部分重编程。另有学者利用病毒载体向小鼠眼部,以特异性的方式实现重编程因子瞬时过表达,从而成功逆转小鼠视网膜神经细胞的衰老,并恢复了衰老小鼠和青光眼小鼠的视力,证明多能性重编程本身具有激活细胞潜能的作用。那么,类比到化学重编程,或许也能针对衰老或损伤部位,以药物组合靶向递送的方式,来增加细胞的可塑性,从而刺激细胞再生,进而实现原位组织再生。 从国内到国外,跨越 15 年的一系列研究 事实上,早在 2008 年即在诱导多能干细胞(iPSC)技术诞生不久之后,祝赛勇就投身到细胞重编程的化学小分子筛选之中,并于 2010 年在 Cell Stem Cell 上发表论文,率先报道了利用单个转录因子和小分子组合实现细胞重编程的成果。2015 年,回国建立独立实验室之后,他立马搭建实验平台,就是希望能够建立高效、快速的化学重编程。 2016 年,刚启动筛选测试的时候,他和团队就遇到一个棘手难题。实验所需的细胞严重不足,于是他们赶紧从外部公司购买 Oct4-GFP 小鼠。然而当他们第一次取出成纤维细胞并进行化学重编程时,却几乎没有出现荧光,这让课题组既着急又困惑。一开始,他们怀疑是技术不稳定的原因。后来,才发现相比 OG2 品系小鼠,Oct4-GFP 品系小鼠由于报告基因拷贝数较少的原因,因此荧光会弱很多。但在当时他们已经开始进行大规模小分子筛选,原有的 OG2 成纤维细胞数量告急,眼看着课题即将停滞。后来经过多方努力,他们才解决了细胞来源问题。时间很快来到 2018 年,当时课题已经取得了不错进展。这时,重编程的优化已经接近 14 天。与此同时,也面临竞争压力。“好在课题组一起积极调整心态,坚持自己的步伐,又经过一年的筛选和优化,建立了时间周期为 12 天的体系。这时,大家反而沉下心,又花了大半年时间,尝试了所有能做的测试和优化,才建立了目前时间周期最快为 1 周的 FCR 体系。”祝赛勇说。 2019 年,在 FCR 系统构建成功之后,课题组成员非常好奇系统之中具体发生了什么。为此,他们先是进行了转录组测序。可是,在对转录组测序进行常规分析之后,还是一直理不出头绪。于是,在对重编程过程中的转录组数据进行两两比较之后,他们意外发现 FCR 后期经历了一个“滞育”类似状态。胚胎滞育,是指哺乳动物的胚胎在应对外源环境或激素作用下,发生胚胎的新陈代谢减缓甚至停滞,期间伴随着胚胎植入的滞后。而在退出滞育状态之后,胚胎仍然可以正常发育成为完整个体。此次研究发现:在 FCR 后期细胞的基因表达模式,类似于体内滞育囊胚的基因表达模式,包括下调与细胞分裂和蛋白质合成的相关通路。实验中,课题组证明 FCR 后期细胞的 DNA 和蛋白质的合成速率显著下调,这证明了滞育类似状态的存在。有趣的是,在对相关数据进行对比之后,他们发现滞育类似状态是 FCR 后期一种独特的状态。当对滞育类似状态进行抑制之后,则会导致重编程效率的显著下降。 此后,如何分析和关联大规模多组学数据成了最大的难题。2021 年底,经过所有组员的努力终于发现了 H3K9me3 修饰的独特之处,并分析得出如下结论:H3K9me3 会抑制多能性相关的 ERV,从而调控重编程的机制。H3K9me3,是一种可以抑制细胞多能性重编程的异染色质修饰。然而,以往关于 H3K9me3 在细胞重编程的研究,主要集中于研究它对基因的调控作用。而在本次研究之中,他们发现 H3K9me3 主要能够修饰基因组上 ERV 富集的基因稀疏区域。通过一番筛选,他们找到多个受到 H3K9me3 抑制的多能性相关 ERV,这些 ERV 在 FCR 后期会被显著激活。 实验中,该团队进一步证明 H3K9me3 会通过抑制多能性相关 ERV,从而形成重编程的障碍。这一机制的发现,再次说明在细胞命运转变过程之中,表观遗传修饰可以通过调控 ERV 表达,从而影响细胞身份的建立。此外,通过研究化学重编程的全过程,该团队提供了高质量的转录组学数据和表观组学数据。通过这些数据他们系统性地描绘了 FCR 过程中细胞基因表达动态和表观遗传动态。 再生研究,永无止境 除本次成果之外,该团队在过去也积累了不少其他成果。课题组还表示:“近年来,我们实验室深耕化学重编程领域,在 Nature Cell Biology、EMBO J、PNAS 上连发多篇论文。下一步我们将集中精力,针对在这些研究中最新筛选的多个小分子,对其作用机制进行探究。”与此同时,该团队在干细胞基因编辑和胰岛前体细胞高效扩增及分化(ePP-islet)上也取得了一些进展,相关论文此前相继发表在 Science 子刊和 Nature 子刊。在这一系列研究中,课题组采用了多种筛选方法,一方面他们参考已有文献中报道的小分子,另一方面则大规模地自行筛选小分子文库。 目前,利用直接模仿转录因子的方法,来设计化学小分子依旧比较困难。不过,利用化学小分子直接或间接调控转录因子,是一个可行的有效方案。例如,利用小分子可以直接激活内源转录因子,从而促进化学重编程。在实践中,尽管广谱盲选的手段既耗时又耗力,不过这依然是目前比较有效的手段,并能帮助发现一些有趣的分子机制。未来,随着人工智能、虚拟筛选等新技术的发展,必将助力实现通量更高、效率更高的小分子高通量筛选。可以想象的是,将来只需从病人身上取少量血液细胞,利用快速化学重编程技术,即可将其转变成可无限扩增的种子细胞,甚至可以通过基因编辑技术进行改造,再定向分化到具备生理功能的胰岛,从而有望治愈糖尿病。 整体来看,细胞重编程是一个非常神奇的生物学过程,蕴含着无限潜能,但是仍有很多未解的奥秘。再生和返老还童,是古老而又永恒的人类梦想与追求,这条道路永无止境,等待科学家们进一步的探索。 本文内容转载自“ DeepTech深科技”微信公众号。 原文链接: https://mp.weixin.qq.com/s/LfOTtL5bwFfXJN2UWzSHaQ
  • 《线粒体是细胞应激的“煤矿里的金丝雀”》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-12-17
    • 线粒体是存在于大多数细胞中的微小结构,以其产生能量的机制而闻名。现在,索尔克的研究人员发现了线粒体的一种新功能:当细胞受到压力或化学物质(如化疗)的损害时,线粒体就会发出分子警报。该研究结果于2019年12月9日发表在《自然·新陈代谢》杂志的网络版上,它可能导致新的癌症治疗方法的产生,从而防止肿瘤对化疗产生耐药性。 线粒体是感知DNA压力的第一道防线。索尔克分子与细胞生物学实验室教授、生物医学科学奥黛丽·盖泽尔(Audrey Geisel)主席杰拉尔德·沙德尔(Gerald Shadel)说:“线粒体告诉细胞的其他部分,‘嘿,我受到攻击了,你最好保护自己。’” 细胞运作所需的大部分DNA存在于细胞核内,包裹在染色体中,遗传自双亲。但是每个线粒体都有自己的小圈DNA(称为线粒体DNA或线粒体DNA),只从母亲传给她的后代。大多数细胞含有数百甚至数千个线粒体。 Shadel的实验室小组先前发现,细胞对包装不当的mtDNA的反应类似于它们对入侵病毒的反应——通过从线粒体释放mtDNA,并启动一种增强细胞防御的免疫反应。 在这项新的研究中,Shadel和他的同事们开始更详细地研究,什么分子通路是由受损的mtDNA释放到细胞内部激活的。他们瞄准了干扰素刺激基因(ISGs)的一个子集,这些基因通常在病毒出现时被激活。但在这种情况下,研究小组意识到,这些基因是由病毒激活的isg的一个特殊子集。同样的ISGs亚型也经常被发现在癌细胞中被激活,这些癌细胞已经对化疗产生了抗药性,而化疗的破坏因子是脱氧核糖核酸(脱氧核糖核酸)。 为了消灭癌症,多氧rubicin以核DNA为目标。但新的研究发现,这种药物也会导致mtDNA的损伤和释放,进而激活ISGs。研究小组发现,ISGs的这个子集有助于保护核DNA不受损害,从而导致化疗药物的耐药性增强。当Shadel和他的同事在黑素瘤癌细胞中诱导线粒体应激时,细胞在培养皿中甚至在老鼠体内生长时,对多氧rubicin产生了更强的抗性,因为ISGs的高水平保护了细胞的DNA。 Shadel说:“也许线粒体DNA在每个细胞中存在如此多的副本,并且自身的DNA修复途径较少,这使得它成为一个非常有效的DNA压力传感器。” ——文章发布于2019年12月14日 他指出,大多数时候,mtDNA更容易受到损害可能是一件好事——它就像煤矿里的金丝雀一样保护健康的细胞。但在癌细胞中,这意味着强力霉素——首先破坏mtDNA,然后敲响分子警钟——在破坏癌细胞的细胞核DNA方面效果较差。 “它告诉我,如果你能在癌症治疗期间防止线粒体DNA受损或其释放,你可能就能防止这种形式的化疗耐药性,”Shadel说。 他的团队正在计划未来的研究,具体研究mtDNA是如何被破坏和释放的,以及细胞核中的ISGs会激活哪些DNA修复途径来避免损伤。 这项研究的其他作者有:郑武,凯拉什·曼加尔哈拉,阿尔瓦·塞恩兹,劳拉·纽曼,维多利亚·特里普尔和索尔克的苏珊·凯赫;耶鲁医学院的Sebastian Oeck、Lizhen Wu、Qin Yan、Marcus Bosenberg、Yanfeng Liu、Parker Sulkowski和Peter Glazer;德州农工大学医学院的Phillip West;以及麻省大学医学院的张晓鸥。 支持的工作,参与研究的人员是由美国国立卫生研究院,德州的癌症预防和研究所,助理国防部长办公室卫生事务,中国学术顾问,沙克Excellerators博士后奖学金,乔治·e·休伊特基础医学研究的博士后奖学金。