《《Science》“植物根系改变生长方式的基本机制”》

  • 来源专题:耕地与绿色发展
  • 编译者: 张毅
  • 发布时间:2024-12-20
  • 11月,比利时根特大学联合中国科学院遗传与发育生物学研究所合作开展的研究揭示了植物根系如何经历青春期阶段的机制,有助于培育出更耐旱的植物,对发展气候适应性农业具有重要意义。该研究发现了SQUAMOSA PROMOTER BINDING-LIKE 13 (SPL13)在调控定向细胞分裂中的关键作用,是一个对正常根系生长和形态至关重要的过程。SPL转录因子特别是SPL13基因表达的改变,通过调节细胞分裂的方向,对植物根系转变至关重要。SPL13活性引起的这种转变的特征是根的形态和分子结构发生明显变化,改变SPL13的表达水平甚至可以让科学家加速或减缓根系衰老,这对植物的整体发育至关重要。该研究不仅揭示了一种未知的植物发育基本机制,而且为提高作物产量和植物在不断变化的环境条件下的抗逆性开辟了新途径。相关成果以“SPL13 controls a root apical meristem phase change by triggering oriented cell divisions”发表在《Science》上。
  • 原文来源:https://www.science.org/doi/10.1126/science.ado4298
相关报告
  • 《植物所在植物侧生器官发育和多样化机制研究中获进展》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-28
    • 植物的侧生器官如叶片、萼片和花瓣等,按基本结构可分为双面、单面和盾状三种类型。盾状器官如食虫植物的捕虫叶和毛茛科植物具蜜腺的花瓣在自然界普遍存在,吸引了达尔文等很多科学家的关注。已有研究表明,背腹极性基因的表达重排是一些食虫植物中盾状叶或小叶形成的关键。然而,其他盾状器官形成、起源和多样化的机制,尚不清楚。毛茛科(Ranunculaceae)植物花瓣的多样性极为丰富,是探究植物侧生器官发育和进化的理想体系。   中国科学院植物研究所孔宏智研究组以毛茛科植物的花瓣为研究材料,综合利用三维成像、基因表达、功能验证及计算机模拟技术,系统探究了盾状结构形成和多样化的机制。研究发现,与盾状叶相似,盾状花瓣的形成也是由背腹性基因表达范围的转变引起,不同类型盾状结构的形成则是由背腹性程序表达转变的程度和器官不同区域生长速率的差异所致。该研究通过引入描述器官原基上背腹性程序作用范围的3个参数和器官不同部位生长速率的6个参数,提出了简单且具有普适性的计算机模拟系统。基于该系统,自然界中发现的大多数植物侧生器官均能被模拟出来。该研究揭示了盾状结构形成和多样化的机制,并进一步强调了计算机模拟在生物学研究中的重要性。   4月21日,相关研究成果在线发表在《科学进展》(Science Advances)上。研究工作得到国家自然科学基金、中国科学院和博士后创新人才支持计划的支持。英国约翰英纳斯中心和英国剑桥大学的科研人眼参与部分研究工作。
  • 《Science | 一类新的植物-病原体互作模式及其机制》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-02-16
    • 2024年2月16日,清华大学/西湖大学柴继杰教授团队、南京农业大学王源超教授团队与合作者在Science上发表了题为A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity的研究论文,揭示了植物通过劫持病原体细胞壁降解酶的活性来促进植物免疫的全新分子机制。 果胶多聚半乳糖醛酸水解酶(polygalacturonase, PG)在多种植物病原体(细菌、真菌、卵菌、线虫和昆虫)中均有发现。PG是病原体入侵植物过程中最早分泌的细胞壁降解酶之一,它对病原体的致病性必不可少。PG可以将果胶多聚半乳糖醛酸(polygalacturonic acid, PGA)水解成低聚半乳糖醛酸(oligogalacturonic acid, OG)。植物通过分泌PG抑制蛋白(PG-inhibiting protein, PGIP)来抑制PG酶活性。PGIP是仅含有胞外亮氨酸重复(LRR)结构域的蛋白,在所有高等植物基因组中均有编码。 该研究首次解析了分辨率为1.93?菜豆PGIP (PvPGIP2)与镰刀菌PG (FpPG) 复合物结构。出乎意料的是,与之前所有报道的相关复合物结构不同,PvPGIP2并未结合在FpPG的酶活中心处,这表明PvPGIP2有不同的FpPG抑制机制。 体外酶活实验与植物功能实验表明:PvPGIP2-FpPG水解PGA的OG产物中含有比例较大的长链OG (OG10-15),其作为免疫激活子可诱导植物PTI响应;而FpPG水解PGA的产物中含有比例较大的短链OG (OG2-7),几乎不含有长链OG10-15。OG2-7可以有效地抑制PTI响应。因此,PvPGIP2巧妙地利用了病原体FpPG的酶活性,通过改变病原体FpPG酶活产物的分布,从而激活植物PTI响应。 研究人员进一步揭示了PGIP-PG生成长链OG10-15的分子机制:PvPGIP2与FpPG结合后形成了一个全新的、更长的底物OG结合口袋,PvPGIP2增强了底物OG与FpPG的结合能力。PvPGIP2-FpPG是一个全新的多聚半乳糖醛酸水解酶,它与FpPG具有不同的底物选择性和催化活性。以解析的高分辨率PvPGIP2-FpPG复合物结构为基础,研究者对PGIP进行了工程化改造。结果表明,改造后的PGIP具有了产生更多OG10-15的能力,并且能够使得改造后的PGIP获得新的PG识别功能。 综上所述,该研究揭示了PGIP-PG介导植物免疫的分子机制。目前已有很多证据表明病原体利用效应蛋白劫持宿主体内信号通路、抑制植物免疫以促进其侵染宿主。该研究显示植物可以利用类似的机制,反向劫持病原体效应蛋白,从而激活植物免疫。该研究为植物与病原体互作领域提供了一个全新的研究范式,也为植物抗病育种提供了新的策略。同时,该项研究也为研究动物与病原体互作提供了思路。