《Nature丨细菌核糖体冬眠因子的新家族》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-02-20
  • 2024年2月14日,纽卡斯尔大学等机构的研究人员在Nature在线发表了题为A new family of bacterial ribosome hibernation factors的文章。

    为了在饥饿和压力下节省能量,许多生物体使用冬眠因子蛋白来抑制蛋白质合成并保护其核糖体免受损害。在细菌中,已经描述了两个冬眠因子家族,但这些蛋白质的低保守性以及物种、栖息地和环境压力源的巨大多样性混淆了它们的发现。

    该研究通过结合低温电子显微镜、遗传学和生物化学,研究人员确定了 Balon,这是适应寒冷的细菌 Psychrobacter urativorans 中的一种新的冬眠因子。研究人员发现 Balon 是古真核翻译因子 aeRF1 的远距离同源物,存在于 20% 的代表性细菌中。在冷休克或静止期,Balon 在与 EF-Tu 复合的空置和积极翻译核糖体中占据核糖体 A 位点,突出了 EF-Tu 在细胞应激反应中的意想不到的作用。与典型的 A 位点底物不同,Balon 以不依赖 mRNA 的方式与核糖体结合,启动了一种新的核糖体冬眠模式,这种冬眠模式可以在核糖体仍在参与蛋白质合成时开始。

    该研究表明,Balon-EF-Tu调节的核糖体冬眠是一种无处不在的细菌应激反应机制,并且研究人员证明了分枝杆菌中假定的Balon同系物以类似的方式与核糖体结合。这一发现要求对当前从常见模式生物推断的核糖体冬眠模型进行修订,并对我们如何理解和研究核糖体冬眠具有许多意义。

相关报告
  • 《Nature | 核糖体激活血管生成素的结构机制》

    • 编译者:李康音
    • 发布时间:2024-05-10
    • 2024年5月8日,麻省大学医学院的研究人员在Nature上发表了一篇题为Structural mechanism of angiogenin activation by the ribosome的文章。 血管生成素是一种 RNase A 家族蛋白,可促进血管生成,并与癌症、神经退行性疾病和表观遗传有关。在细胞应激过程中被激活后,血管生成素会在反密码子环处切割 tRNA,导致翻译抑制。然而,分离出的血管生成素的催化活性很低,而且酶的激活机制和 tRNA 的特异性一直是个谜。 利用生化试验和低温电子显微镜揭示了这些机制。该研究揭示了细胞质核糖体是人们长期寻找的血管生成素的激活剂。2.8 埃分辨率的低温电子显微镜结构显示,血管生成素结合在 80S 核糖体的 A 位点上。血管苷元的 C 端尾部通过与核糖体的相互作用而重新排列,从而激活了 RNase 催化中心,使该酶在 tRNA 切割方面的效率提高了几个数量级。其他 80S-angiogenin 结构捕捉到了 tRNA 底物如何被核糖体引导到 angiogenin 的活性位点,证明核糖体是特异性因子。 因此,该研究结果表明,血管生成素是由具有空缺 A 位点的核糖体激活的,这种核糖体的丰度在细胞应激时会增加。这些结果可能有助于开发治疗癌症和神经退行性疾病的药物。
  • 《Science | 核糖体柄捕获的CARF-RelE核糖核酸酶抑制CRISPR信号转译》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-12-04
    • 2023年11月30日,维尔纽斯大学的研究人员在Science发表题为Ribosomal stalk-captured CARF-RelE ribonuclease inhibits translation following CRISPR signaling的文章。 原核III型CRISPR-Cas抗病毒系统使用环低聚腺苷酸(cA(n))信号来激活多种辅助蛋白,从而加强CRISPR-Cas防御。该研究描述了一类cA(n)依赖的效应蛋白,称为crispr - cas相关信使RNA (mRNA)干扰酶1 (Cami1),由crispr相关的Rossmann折叠传感器结构域融合到翼螺旋-转螺旋和relea家族mRNA干扰酶结构域组成。在被环四腺苷酸(cA(4))激活后,Cami1切割暴露在核糖体a位点的mRNA,从而消耗mRNA并导致细胞生长停滞。载脂蛋白Cami1和与核糖体结合的Cami1- ca(4)复合物的结构描述了导致Cami1激活的构象变化以及Cami1与细菌核糖体结合的机制,揭示了与真核核糖体失活蛋白意想不到的相似之处。