《塑料污染丨农用地膜污染防治》

  • 来源专题:农业立体污染防治
  • 编译者: 季雪婧
  • 发布时间:2018-12-17
  • 2016年我国农作物地膜覆盖面积达到1.84×107hm2,成为世界上地膜覆盖栽培面积最大的国家。但是,农用地膜在提高作物产量的同时,其残留在耕地土壤中的碎片已成为我国北方地区主要的面源污染问题之一。

    我国农用地膜使用与污染态势分析

    1.农用地膜利用现状

    地膜覆盖面积和使用量显著增加:

    我国地膜覆盖面积从1992年的5.934×106hm2增长到2016年的1.84×107hm2,递增了2.11倍,年均增长率为8.76%,平均每年增加5.195×105hm2。地膜使用量从1992年的3.803×105t增长到2016年的1.47×106t,增加了2.87倍,年均增长率为11.94%,平均每年增加4.54×104t,已占世界地膜使用总量的50%以上(数据来源于《中国农村统计年鉴》1992—2016 年)。

    地膜使用区域由西部向东部急速扩展:

    对各省覆膜面积的变化统计表明,1992年山东、四川、新疆、湖北是四个主要的覆膜大省(区)。至2016年,以山东、甘肃、内蒙古、河北、河南为代表的中原地区覆膜栽培大省(区)已经形成;云南、四川成为西南地区覆膜栽培的主要种植区。地膜覆盖栽培技术从我国中部向西北、东北、南方地区扩展,已覆盖全国所有省(市、区)。

    2.农用地膜污染态势

    沼气在未来必是非常重要的能源之一。沼气是多用途的可再生能源,可以替代传统的燃料产生热能和电能,它也可以在汽车工业中用作气体燃料。生物甲烷(优质沼气)也同样可以替代天然气用于化工生产。据专家评估,由于厌氧消化(AD)是一个节能且环境友好的技术,通过厌氧消化产生的沼气比其他形式的生物能源有显著的优势。

    残膜碎片障碍耕层形成,土壤理化性质下降,作物减产:

    试验表明,当农田残膜量为225kg/hm2时,容重较无残膜土壤增加18.2%,土壤孔隙度降低13.8%,0~120cm 土层的土壤体积含水率下降、土壤水分下渗速度缓慢、生育期内土壤贮水量减少。残膜对棉田土壤养分也有不同程度的影响,连作10年、15年和20年后,土壤速效磷下降29.14%、22.09%和38.34%,土壤速效钾先增加但随后明显降低,残留地膜不利于土壤中养分的矿化释放,导致当季供肥能力下降。另有研究表明,农膜回收率低的农田连续覆膜3~5年后,小麦产量下降 2%~3%,玉米产量下降10%左右,棉花产量下降10%~23%,蔬菜产量下降14.6%~59.2%,作物减产显著。

    地膜降解物致使环境污染风险增加:

    残留地膜在土壤中可释放出无机污染物和有机污染物,对土壤性质和农作物的生长造成影响。残留地膜中含有的增塑剂、抗氧化剂和阻燃剂是导致土壤有机物污染的主要原因,其中增塑剂多为酞酸酯类化合物,逐渐释放到环境中,对空气、水和土壤等造成污染,通过食物链进入人体危害健康,环境和健康风险加剧。

    农用地膜残留污染成因

    1.普通聚乙烯(PE)地膜材料降解难

    农用地膜都是由高分子的聚乙烯化合物及其树脂制成的,这些物质具有分子质量大、性能稳定、耐化学侵蚀、能缓冲冷热等特性,很难在自然条件下进行光降解和热降解,也不易通过细菌和酶等生物方式降解,在一般情况下,残膜可在土壤中存留200~400年,将导致严重的区域农业面源污染。

    2.地膜质量标准不达标

    回收困难,再利用效率低,按照1992年我国轻工业部颁布实施的《聚乙烯吹塑农用地面覆盖薄膜标准》(GB 13735—1992),规定聚乙烯地膜最小厚度为0.008mm,但地膜实际厚度主要集中在0.004~0.008mm,考虑市场及价格,地膜生产商更倾向于生产超薄型地膜。近年来,废旧农膜加工企业的市场利润率大幅降低,加工企业难以享受税收、电费等优惠政策,也进一步限制了地膜回收,导致地膜再利用效率低。

    3.可降解地膜工艺不成熟,尚无合适替代产品

    由于不同作物对降解地膜的宽度、延展性以及裂解起始期、裂解速率、降解率产品特性等需求差异较大,导致可降解地膜材料与农艺生产的配套性差。例如:降解地膜材料本身延展性与播种机械不能配套,地膜黏连在打孔器上被拉伸,致使种子不能进入孔洞中而播在膜面上,造成约30%的播种失败。同一降解地膜在不同气候条件下,裂解的起始期不同,使地膜增温保墒的效应存在地区差异。在使用过程中存在的问题,也制约了降解地膜的大面积推广,短期内还不能全部替代普通PE 地膜。

    4.生产管理体系混乱,地膜污染控制

    缺乏严格的监管机制,据不完全统计,我国拥有大小规模不等的地膜生产企业约800家,年生产能力3000t以下的小型企业约600家,由于产业政策、价格体系和供求关系等方面的原因,采用的农用树脂品牌多、乱、杂,货源不稳定,地膜产品质量不高,严重影响了地膜的使用和回收。国家对农田地膜污染治理也缺乏相应的法律法规来监督和约束,农民仅将地表残膜简单回收一下,有的则直接就翻到土壤中。地膜回收点设置不足,农民捡拾的残膜也不能得到有效回收,基本都是焚烧或在田间地头堆置,往往造成地膜的二次污染。

    农用地膜污染防治的战略措施

    1.推进地膜标准化生产

    从源头遏制不合格地膜进入农田在推进地膜生产标准化过程中,各地应积极制定符合本区域实际情况的地方标准。例如,2014年新疆颁布了《聚乙烯吹塑农用地面覆盖薄膜》地方强制标准(DB65T/3189—2014),标准中明确了农田地膜的最小公称厚度为0.01mm,并且耐候期必须大于180d。这样的标准要求就是要保证新标准地膜在一个生产周期内不能破碎为碎片,生产结束后便于回收再利用。2016年新疆又颁布了《新疆维吾尔自治区农田地膜管理条例》,从标准到立法层面对农田地膜科学使用给予了规定。

    2.优化地膜覆盖方式,推广适时揭膜等技术

    优化地膜覆盖方式,推进地膜科学使用,是减少农田残膜污染的重要环节。开展地膜在不同作物和不同栽培模式下的科学合理施用,一是减少无效的超宽地膜覆盖,降低地膜覆盖率,有效减少地膜使用量。选择适宜宽度的地膜,可有效降低单位面积地膜使用量,减少农田残膜积累。二是推广适时揭膜技术。在地膜发生破碎老化前,及时将地膜清除出农田。

    3.加强残膜回收机械研发与推广

    提高地膜机械化回收力度,残膜回收机的研发应与种植模式相适应。目前研发的重点是秸秆粉碎或拔出与残膜回收联合作业机,代表机型包括新疆农垦科学院4SJ-1.6型和4SJ-2.0型,机具结构相对复杂,在机械高速运转条件下难以保障残膜的回收率,这也是联合作业机研发的重点和难点。总体来看,残膜回收机械尚需加大研发力度。

    4.加大降解地膜产品研发力度

    研发完全降解地膜,其降解物质不会再造成二次污染。针对区域生态气候特点、作物生育期,在不同区域开展降解地膜的试验示范工作,准确地确定农用地膜裂解及降解规律,为新产品的研发提供依据。实验表明,地膜厚度较大的降解膜裂解时间早于较薄的地膜;黑色降解膜腐解率高于白色膜,腐解速率随时间增加递减,这表明目前降解地膜的腐解率并非当年能够完全腐解,存在滞后效应。综合地膜裂解和腐解特性,应研发起始裂解期晚、保证地膜增温保墒,同时在地膜翻入土壤后又能快速腐解的产品,以降低地膜残留。

    5.构建农用地膜防治的法律法规体系

    建议制定和健全残膜污染防控法律法规,使残膜防治有法可依。制定残膜残留量超标整治措施,统一并完善地膜生产、残留量标准,规范产品质量,将残膜污染防治工作纳入法制管理轨道。

    参考文献

    许咏梅,房世杰,马晓鹏,朱倩倩.农用地膜污染防治战略研究[J].中国工程科学,2018,20(5):96-102

相关报告
  • 《塑料污染治理再加力度》

    • 来源专题:长江流域资源与环境知识资源中心 | 领域情报网
    • 编译者:lifs
    • 发布时间:2020-08-03
    • 国家发改委等九部门日前印发《关于扎实推进塑料污染治理工作的通知》(以下简称《通知》),对进一步做好塑料污染治理工作,特别是完成2020年底阶段性目标任务作出部署。8月底前,各地启动商场超市、集贸市场、餐饮行业等重点领域禁限塑推进情况专项执法检查。   做好塑料污染治理,2020年底阶段性目标任务是什么?会给塑料、包装等行业带来哪些机遇和挑战?记者采访了有关专家。   不少一次性塑料制品年底禁用   今年1月,《关于进一步加强塑料污染治理的意见》印发实施。国家发改委宏观经济研究院副研究员张德元认为,相较于2007年的政策,“新版限塑令”构建起覆盖塑料制品生产、流通、消费和末端处置全生命周期的政策体系,开启了中国塑料污染治理的新征程。   先看供给端,根据“新版限塑令”,禁止生产和销售厚度小于0.025毫米的超薄塑料购物袋、厚度小于0.01毫米的聚乙烯农用地膜。禁止以医疗废物为原料制造塑料制品。全面禁止废塑料进口。到今年底,禁止生产和销售一次性发泡塑料餐具、一次性塑料棉签;禁止生产含塑料微珠的日化产品。   再看消费端,到今年底,直辖市、省会城市、计划单列市城市建成区的商场、超市、药店、书店等场所以及餐饮打包外卖服务和各类展会活动,禁止使用不可降解塑料袋,集贸市场规范和限制使用不可降解塑料袋;全国范围餐饮行业禁止使用不可降解一次性塑料吸管;地级以上城市建成区、景区景点的餐饮堂食服务,禁止使用不可降解一次性塑料餐具。   为落实“新版限塑令”,日前九部门印发《通知》,并公布了禁限管理的细化标准。   一方面,政策保持了延续性,对以往政策已经明确禁止的品种进行了再次强调。如厚度小于0.025毫米的超薄塑料购物袋、厚度小于0.01毫米的农用地膜,相关国家规定和强制性标准早就明令禁止了。一次性发泡塑料餐具也已经列入《产业结构调整指导目录》(2019版)淘汰类产品。   另一方面,政策增强了操作性,对部分品种的禁限范围进行了具体界定。例如,明确“含塑料微珠的日化产品”,主要指部分沐浴剂、洁面乳、磨砂膏、洗发水等淋洗类化妆品和牙膏、牙粉,并规定了塑料微珠的尺寸,暂不具备禁止条件的驻留类化妆品尚未纳入禁限范围。再如“不可降解塑料袋”,不包括盛装散装生鲜食品、熟食、面食等商品的塑料预包装袋、连卷袋、保鲜袋等;而且禁用场景限制为商场、超市、药店、书店、餐饮打包外卖服务、展会活动等,暂不涵盖其他使用场景。   “细化标准充分考虑了行业实际和生产供应情况,增加了可操作性,保证政策稳步推进。”中国商业联合会副会长张丽君说。   设定豁免情景,提供缓冲期   塑料污染治理,既要增强紧迫感、责任感,也要兼顾实际可行性,实现科学管理。   《通知》要求,各地8月中旬前出台省级实施方案,细化分解任务,层层压实责任;督促省会城市、计划单列市、地级以上城市等结合本地实际,重点围绕2020年底阶段性目标,分析评估各领域重点难点问题,研究提出可操作、有实效的具体推进措施,确保如期完成目标任务。   充分考虑差异性,《通知》不搞“一刀切”。清华大学环境学院教授温宗国认为,《通知》充分考虑到地区间、行业间差异,提供差异化管控路线,符合基本国情和因地制宜的原则,使综合治理措施逐步落实。   以不可降解塑料袋为例,到2020年底,直辖市、省会城市、计划单列市城市建成区的商场、超市、药店、书店等场所以及餐饮打包外卖服务和各类展会活动是“禁止使用”,而集贸市场则是“规范和限制使用”。到2022年底,“禁用”的实施范围才会扩大至全部地级以上城市建成区和沿海地区县城建成区。   充分考虑可行性,《通知》也设定了豁免情景。如:一次性塑料棉签不包括相关医疗器械;在应对重大突发公共事件期间,用于特定区域应急保障、物资配送、餐饮服务等的一次性塑料制品可免于禁限使用等。“对特定场景和重大突发公共事件的特殊需求进行豁免,为企业生产方式和消费者消费习惯的转变提供缓冲期。”温宗国说。   《通知》明确了加强对禁止生产销售塑料制品的监督检查,加强对零售餐饮等领域禁限塑的监督管理,推进农膜治理,规范塑料废弃物收集和处置,以及开展塑料垃圾专项清理等五项重点领域,要求狠抓推进落实。   “再利用价值较低,或者很难进行分类利用的品种,是塑料污染的主要来源,也是塑料污染治理的关键。《通知》紧紧抓住风险大的品种,重点推动。”张德元分析,厚度小于0.01毫米的不可降解农用地膜,在使用后一扯就碎,非常难回收,长年累积会给耕地质量带来危害。   再如一次性不可降解塑料刀叉勺、吸管,易混入餐厨垃圾,给餐厨垃圾厌氧发酵等后续资源化处置利用带来困难。   替代产品产能可以满足消费需求   张丽君介绍,对于“新版限塑令”,零售企业已经开始采取积极行动,并形成了一批切实可行的替代方案。很多商超可为消费者提供无纺布环保购物袋,一些书店采用简易的牛皮纸包裹取代购物袋也收到了很好效果。为了减少一次性塑料吸管的使用,一些餐饮企业通过改造冷饮杯盖,用自带饮嘴的杯盖代替“吸管+杯盖”的组合。   据测算,2020年底阶段性目标涉及的相关地区零售、餐饮领域,一次性塑料购物袋、一次性吸管、一次性刀叉勺3类塑料制品的年消费量约30万吨,无纺布、纸、竹木等替代品的原料充足,可降解塑料的年供应量约有40万吨。“替代产品产能可以满足消费需求。”张丽君说。近期,有关行业协会已在积极组织替代产品生产企业和餐饮、零售企业开展供需对接,推动重点领域减塑替代。   可循环包装、免胶带纸箱、瘦身胶带、全生物降解袋……电商、快递企业落实“新版限塑令”想出妙招。中国循环经济协会副会长兼秘书长赵凯介绍,塑料污染治理还倒逼企业不断探索新产品、新模式,企业正从仓储、包装、运输、末端配送等环节展开绿色建设。   “随着相关细化要求的落地实施,必将有力推动上下游合作伙伴协同打造绿色供应链。”赵凯说。   塑料污染治理工作是一项系统工程,在做好源头减量的同时,有关部门、行业协会正在同步推进塑料制品生态设计,强化塑料废弃物回收处置等工作,加强综合治理,推动构建塑料污染治理长效机制。
  • 《(微)塑料污染对土壤生态系统的影响》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2019-03-06
    • 导 读:塑料已经成为现代社会不可或缺的产品而被广泛应用,塑料污染也成了一个全球性的环境污染问题。近年来,土壤塑料污染的问题也开始受到关注。本文针对近几年来国内外关于塑料污染对土壤生态系统的影响进行综述,主要包括以下几个方面: (1)微塑料对土壤物理化学性质的影响; (2)微塑料对土壤微生物群落的影响; (3)微塑料与土壤动物的相互作用。 最后,本文对未来关于土壤微塑料研究的重点方向进行了展望。 文/朱永官,朱冬,许通,马军(中国科学院城市环境研究所,中国科学院城市环境与健康重点实验室) 来源:《农业环境科学学报》2019年1期 我们现在身处一个“塑料”的时代,塑料产品被广泛应用于各领域,其产量和废弃量逐年递增。在欧洲,包装领域需求塑料最多,占总重量的40%,其次为建筑、汽车、电器、农业等领域。全球塑料产量从1950年的200万t增加到2015年的3.8亿t,总产量达78亿t(中国产量约占28%),其中9% 的塑料被回收,79%的塑料被填埋或者遗弃在自然界中。自1992年至2016年,全球生活源废塑料贸易量为2.4亿t,中国进口量占72%,对全球的废塑料回收做出了巨大贡献。 塑料的大量使用已经导致环境中塑料及其衍生品对大气、海洋和陆地环境造成污染。2012年全球因生产和使用塑料产品而排放的二氧化碳(不包括填埋和焚烧)达3.9亿t。大量塑料被随意丢入湖泊、河流并汇入海洋,并通过运动的洋流在世界五个地区集中,形成世界的“海洋垃圾带”。这些塑料碎片已对海洋生态造成威胁,甚至将可能产生不可逆的影响。研究表明,2010 年沿海国家和地区共产生约2.8亿t塑料垃圾,其中480 万~1270 万t塑料流入海洋,中国的排放量远高于全球其他地区,约为美国的30倍。尽管我们对Jambeck等研究的模型和方法持怀疑态度,但研究的结论已成为发达国家对我国进行指责与攻击的依据,给我国造成巨大压力。 大块塑料经紫外线照射、碰撞磨损或工业生产等方式,形成粒径小于5 mm 的固体颗粒被称为微塑料,也有学者提出粒径小于1 mm 才称为微塑料。微塑料具有不溶性和持久性,根据形态主要分为球形颗粒、薄膜、碎片和纤维。随着研究的深入,微塑料的分类将越来越精细,粒径更小的微塑料也将被重新定义。汽车轮胎磨损、日常生活和洗衣、工业过程(如打磨)、表面磨损和塑料涂料(如人造草皮和聚合物涂料)是微塑料的主要产生方式,因其能够进入食物链,进而可引发严重的环境和健康问题。海洋受微塑料影响最为直接,在牡蛎等海洋生物体内已发现微塑料颗粒,人类粪便中也已发现微塑料。土壤中(微)塑料的污染也十分普遍,主要通过农膜的大量使用和废弃物的循环利用等途径进入。德国科学家Rillig是世界上最早关注土壤微塑料污染的学者之一,他指出微塑料进入土壤后,积累到一定程度则会影响土壤性质、土壤功能及生物多样性。随后,一些学者进行了相对深入的研究,发现土壤中的微塑料对水分、养分的运输和作物生长均有不良影响。 关于土壤塑料污染今年已有综述论文,他们比较全面地论述了相关的研究进展,总体比较宏观。本文主要结合最新的国内外研究进展,从土壤生物学的视角综述了微塑料污染对土壤生态系统的影响,并提出了未来的一些研究重点和方向,为开展微塑料污染的土壤生态效应的相关研究提供参考。 1 微塑料对土壤物理化学性质的影响 微塑料通过长期的农用地膜残留、有机肥和污泥的施用、地表水灌溉和大气沉降等方式进入土壤环境。在我国上海城郊浅表层(0~3 cm)和深表层(3~6cm)土壤中,分别发现粒径为20~5 mm的微塑料丰度达到78.00个·kg-1土和62.50个·kg-1土,而粒径为5~2cm的塑料丰度达到6.75个·kg-1土和3.25个·kg-1土,且有48.79% 和59.81% 的塑料粒径小于1 mm。在滇池周边的农田和河岸森林土壤中也发现微塑料丰度达7100~42 960个·kg-1土(平均18 760个·kg-1土),且95% 的微塑料粒径在0.05~1 mm 之间。在欧洲农田中,污泥施用使得土壤中微塑料颗粒达到1000~4000个·kg-1土。在澳大利亚悉尼工业区土壤中微塑料含量高达0.03%~6.7%。这些进入土壤中的微塑料,在长期的风化作用、紫外照射及其与土壤中其他组分的相互作用下,表面逐步老化、粗糙,颗粒或碎片裂解,粒径变小,比表面积增大,吸附位点增加,表面官能团增多,疏水性增强,辛醇/水分配系数升高,在土壤pH、盐度、有机质和离子交换等复杂因素的调控下,对土壤中重金属和多环芳烃、多氯联苯、农药、抗生素等有机污染物的吸附能力显著增强,从而改变土壤的理化性质,影响土壤生态系统健康。 微塑料进入土壤可以影响土壤的结构及其他物理性质。de Souza Machado 等研究发现,在环境相关浓度下,微塑料可以影响土壤容重、水力特征以及团聚体的变化。此外,不同微塑料的影响存在较大差异,如聚酯显著降低土壤水稳性团聚体,而聚乙烯则可以显著提高土壤水稳性团聚体的量。一项云南的野外调查研究发现,70%以上的微塑料颗粒和土壤团聚体相结合,特别是和微团聚体结合。但是目前还缺乏有关塑料污染与土壤团聚体相互作用的长期和原位研究,因此尚无法判断塑料污染对土壤水分运移和水土保持的影响。 1.1微塑料对重金属的吸附 近年来,一些研究已经证明:微塑料进入土壤环境会与重金属发生地球化学作用。耕地、林地是农用地膜使用和施肥灌溉的主要区域,Hodson等研究了高密度聚乙烯对农林用地土壤中Zn2+的吸附行为,他们发现,在含有更加丰富的有机质林地土壤中,高密度聚乙烯对Zn2+的吸附能力更强,且吸附行为符合Langmuir 和Freundlich 方程。土壤中微塑料的老化对其吸附重金属也有显著的影响,Nicole等将高密度聚乙烯、聚氯乙烯和聚苯乙烯(微米级的再生塑料颗粒)暴露在人工老化条件(2000 h;光氧化和热氧化)下模拟它们在户外的老化过程后,用柱渗滤试验研究发现了微塑料老化不仅明显增加了其对TOC、Cl、Ca、Cu、Zn的吸附,而且也减弱了重金属的解吸和释放作用,表明老化的微塑料对重金属具备更强的固定能力。Turner等利用新鲜和老化的微塑料小球吸附痕量金属的研究也表明,金属对老化塑料具备更强的亲和力。此外,土壤中的官能团吸附到微塑料表面,可能对其吸附重金属有一定影响,Kim 等对官能团包被的聚苯乙烯吸附Ni的研究表明,官能团改变微塑料和重金属表面的疏水性,从而影响其对重金属的吸附。因此,微塑料一旦进入土壤且被风化老化,在土壤复杂环境的影响下,其将成为重金属的有效载体固定在土壤环境中,可能损害土壤生态系统健康。 1.2 微塑料对有机污染物的吸附 多环芳烃、多氯联苯、杀虫剂、除草剂和抗生素等有机污染物是影响土壤生态系统健康的另一类重要因素。近年来,学者们普遍认为微塑料在环境中扮演着污染物迁移载体的角色。Heskett等对太平洋、大西洋、印度洋和加勒比海区域的孤岛微塑料吸附有机污染物的研究发现,即使是不同环境背景浓度的PCBs、DDTs、HCHs也可被微塑料吸附。污染物的疏水性直接影响其在微塑料表面的吸附,Hüffer等研究了4种微塑料(PE、PA、PS和PVC)对7种脂肪族和芳香族有机物的吸附作用,他们发现PE的吸附主要在于固液相的分配平衡,而PA、PS 和PVC 对有机污染物的吸附以表面吸附为主导,并发现微塑料的吸附能力与污染物的疏水性紧密相关,揭示了疏水作用是影响微塑料吸附性的主要因素。Sven 等在pH=4、7、10的条件下,用两种微塑料颗粒(聚乙烯和聚苯乙烯)吸附19种不同的污染物(农药、药品和个人护理产品),结果也证明相比于中性物质,疏水化合物更易于吸附到塑料颗粒。环境中微塑料的老化风化对有机污染物的吸附也有很重要的影响,Zhang等将环境中风化老化的发泡聚苯乙烯作为吸附剂对土霉素的吸附进行研究发现,相比于新鲜塑料,环境中发泡微塑料对抗生素的吸附能力更易受pH的影响,有机质的存在影响抗生素与微塑料之间的静电作用,并且能够调控两者的吸附。此外,氢键和多价阳离子桥接、π-π作用对微塑料吸附抗生素具有重要的调控能力。综上,土壤中的有机污染物会被微塑料所吸附,并且复杂的土壤环境条件对微塑料的吸附具有很强的调控能力。 1.3 微塑料对微生物的吸附 微生物对土壤生态系统健康至关重要。随着研究的逐步深入,人们开始担忧微塑料可能成为致病菌等有害微生物的运输载体,影响土壤生态系统健康。已有研究表明,微塑料可为微生物提供吸附位点,使其长期吸附在微塑料表面,形成生物膜,影响土壤微生物的生态功能。而且,伴随微塑料的迁移,微生物会扩散到其他生态系统,改变生态系统的菌群和功能。 Oberbeckmann等研究了不同环境条件(包括营养水平)对聚苯乙烯、聚乙烯表面细菌群落的组成和特异性的影响,发现虽然大部分致病菌没有被微塑料吸附,但表明了污水处理厂中微塑料是抗生素抗性基因水平转移的载体。但总体来说,目前关于土壤中微塑料对微生物的吸附和微生物在微塑料表面生长的研究还很少,有待进一步拓展和深入。 2 微塑料对土壤微生物群落的影响 在海洋塑料污染方面,Zettler等提出塑料际的概念。他们利用电子扫描电镜和下一代高通量测序等手段揭示了塑料表面存在复杂的微生物群落,甚至存在一些潜在的病原菌。在陆地生态系统中目前还缺乏类似的研究。他们的测序数据显示,不同塑料表面的微生物类群与海水的微生物组成具有很大的差异。关于塑料污染对土壤微生物群落影响的研究还较少,目前主要集中在塑料覆膜对微生物群落的影响以及微生物对塑料的降解上。如Jin等长期定位研究表明,塑料覆膜显著提高玉米秸秆的降解,提高土壤有机碳的积累。Sun等研究设施栽培土壤中表面活性剂和微塑料污染对土壤细菌和噬菌体相关的抗生素抗性基因的影响,发现这种影响还没有明确的规律性。塑料污染是如何驱动抗性基因的传播也缺乏机理性的研究,需要深入的探讨。Qian等近期的研究显示,覆膜塑料的残留可以显著降低土壤中碳氮循环相关基因的表达,从而降低土壤碳氮含量,影响土壤肥力。 塑料的化学成分在塑料降解过程中释放,从而造成土壤污染,其中比较典型的是邻苯二甲酸酯。Kong等研究表明,随着土壤中二丁基邻苯二甲酸酯含量的提高,土壤微生物多样性下降。Wang等研究了土壤中二甲基邻苯二甲酸酯污染对黑土中微生物功能的影响,他们发现这类污染物增加了土壤中一些功能基因,包括信号传导基因和与二甲基邻苯二甲酸酯降解有关的一些基因的表达,并认为这些基因表达的增加可能导致土壤中碳氮循环的加快,可能不利于黑土肥力的维持。 3 微塑料与土壤动物的相互作用 3.1 微塑料对土壤动物的影响 微塑料污染能在多个方面影响土壤动物。首先,由于微塑料微小的尺寸,它能够被土壤动物摄食,因此可能在土壤食物链中累积,从而影响各营养级的土壤动物。多项关于蚯蚓的研究已经表明,微塑料能够被蚯蚓取食,且影响其成长、存活和造成肠道的损伤。Rillig等总结早期的研究发现,土壤原生动物如纤毛虫、鞭毛虫和变形虫等能够摄食微塑料颗粒,且提议微塑料对其的影响需要得到更大的关注。特别值得注意的是,变形虫是滤食动物,其可能误食土壤孔隙水中的微塑料颗粒。在对土壤跳虫的研究中,Zhu等发现,28 d土壤微塑料暴露(1 g微塑料·kg-1 干土)显著减少跳虫的繁殖率和成长率,增加其体内碳氮同位素的分馏。值得关注的是,近期对线蚓的研究表明,低浓度纳米塑料急性饮食暴露(0.5%纳米塑料/麦片)可显著增加其繁殖率,但随着暴露浓度的增加,繁殖率随之下降且其生物量显著降低。对秀丽隐杆线虫的研究表明,微塑料能够影响其神经毒性、氧化损伤、繁殖率、成长和存活率,且微塑料粒径的影响大于微塑料种类的影响。但这些研究主要集中于微塑料对模式动物的影响,对实际土壤动物影响的关注还不足。最近,微塑料对土壤动物肠道微生物的影响引起了大家的关注。一项关于跳虫的研究表明,微塑料的土壤暴露破坏了其肠道微生物的群落结构,但显著增加了其肠道微生物的多样性。Zhu等关于线蚓肠道微生物的研究也发现低浓度纳米塑料的饮食暴露可增加其肠道微生物的多样性,但随着暴露浓度的增加,多样性随之下降且肠道微生物的群落结构被改变。由于纳米塑料的暴露,在线蚓肠道中与氮循环和有机质分解相关的微生物(根瘤菌科和黄色杆菌科等)的相对丰度也显著下降。一项对墨西哥东南部传统玛雅家庭花园的调查研究发现,微塑料浓度在土壤(0.87±1.9个·g-1)、蚓粪(14.8±28.8个·g-1)和鸡粪(129.8±82.3个·g-1)中逐级增加,这暗示微塑料能够进入陆生食物链并在其中累积。Rillig也认为土壤微型/中型动物能够取食微塑料并在其土壤碎屑食物链中传递累积。但由于检测手段的限制,关于微塑料在土壤食物链中传递的认识仍十分有限。而且,微塑料通过改变土壤动物的栖息环境间接影响土壤动物的活动。微塑料可能堵塞土壤的孔隙,从而影响土壤中型动物的活动。凋落物中混杂微塑料将影响大型土壤动物(如蚯蚓等)的取食。一项室内模拟实验表明,微塑料污染的凋落物将影响凋落物对蚯蚓的适口性。此外,微塑料表面吸附的一些污染物质也会增强它们对土壤动物的影响,如Hodson等研究发现,微塑料提高了蚯蚓体内锌的生物有效性。 3.2土壤动物对微塑料的影响 在土壤生态系统中,土壤动物能够影响微塑料的二次分解与迁移扩散。在大型食土动物蚯蚓的胃中,误食的塑料碎片可能被磨碎成微塑料。多项研究表明,相比于土壤或食物,在蚓粪中能检测到更小粒径和更高浓度的微塑料颗粒。随着蚯蚓的活动,其取食的微塑料颗粒能通过表面附着、排泄和死亡躯体等形式扩散到其他区域。比如,土壤表面的微塑料被蚯蚓取食后将会通过蚯蚓的活动带入深层的土壤中。此外,蚯蚓活动所形成的土壤孔隙也将有利于微塑料随着水分向下层土壤迁移。跳虫、螨虫等其他中型土壤动物也可以通过表面附着,抓、推等形式加速微塑料在土壤中的迁移。Maaß 等研究发现,跳虫能够加速微塑料的扩散,且不同种类跳虫移动微塑料的能力不同。Zhu等的研究表明,相比于跳虫与捕食螨,甲螨具有更强的移动微塑料的能力。此外,个体小于0.2 cm的土壤微节肢动物能够移动微塑料颗粒到9 cm 以外的区域。由于跳虫与螨虫个体较小,能够进入土壤孔隙中,随着它们的活动也将把微塑料颗粒带入土壤孔隙中,从而可能影响土壤水分和养分的迁移,同时增加微塑料进入地下水的风险。值得注意的是,一项涉及跳虫与捕食螨的研究表明,土壤食物链中捕食与被捕食的联系可以增加跳虫与捕食螨移动微塑料的能力,暗示了在复杂土壤食物网中,土壤动物对微塑料的影响需要更多地考虑动物之间的联系。 4 结论与未来研究方向 塑料污染是一个全球性的问题,但目前的研究还比较分散,未来还需要一些系统性的思考。关于塑料污染对土壤生态系统的影响,未来需要特别关注以下问题: (1)塑料污染对土壤生态系统功能的影响。尽管目前已经开展了土壤塑料污染的研究,但是尚未深层次地探索塑料污染对土壤过程和功能的影响。未来需要探明塑料污染对土壤养分循环和土壤健康的影响,探明微塑料及其成分对土壤微生物功能群和功能基因的影响。 (2)土壤生物对塑料降解的影响及其机理,特别是微生物以及土壤动物肠道微生物对塑料降解的影响。在生物降解研究的基础上,未来需要发展生物修复技术,以缓解陆地生态系统塑料污染的问题。 (3)需要关注塑料制品中其他化学品对土壤生态系统的影响,包括塑化剂和阻燃剂等。这些化学物质在塑料降解过程中被释放出来,需要探明这些化学物质的行为、毒理效应以及在食物链中的积累机制等。 (4)塑料在土壤中作为微生物生长的载体,形成生物膜。未来需要探明塑料表面的微生物群落和功能,以及塑料生物膜对土壤微生物群落和过程的影响。