《山西煤化所在锂离子电池负极用碳及硅/碳材料研发方面取得多项进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-04-01
  • 在加速能源使用形式由化石能源向清洁能源转变的战略背景下,锂离子电池(LIB)凭借其高能量密度、高功率、长循环寿命、较高的工作电压、放电平稳、宽工作温度范围、无记忆效应和安全性能较好等综合优势,在实现环保而高效的能量存储及转化方式方面显得尤为重要。作为锂离子电池的重要组成部分,负极自身的性能直接影响着整个电池体系的性能。   近年来,山西煤炭化学研究所宋燕研究员及其带领的科研团队,通过对碳基及硅基负极材料进行结构设计,有效构筑了一系列电极材料,实现了材料比容量、循环稳定性和倍率性能的显著提升。基于商业负极材料石墨在结构以及容量方面的局限性,团队进行了多方尝试,如图1。以天然石墨鳞片以及沥青焦炭为原料,通过热压烧结的方式制备了石墨碳与多孔纳米碳共存的镍掺杂中空纳米碳负极材料(Carbon,2013,64:537-556; Electrochimica Acta, 2013,112:394-402;专利授权号201210363338.4)。随后,团队以沥青为原料通过加压缩聚的方式制备了类石墨片层碳,此材料作为负极材料时不仅具备石墨的强稳定性,其容量值也得到了提升(专利申请号202010121400.3)。针对硅基负极材料循环稳定性差的特性,团队利用静电作用在硅纳米颗粒表面吸附阳离子表面活性剂来实现核壳双层保护,减弱并限制硅膨胀时应力对材料结构造成的破坏(Chemistry-A European Journal,2017,23:2165-2170;专利授权号 201610580560.8和201610580586.2)。为进一步调控硅基双包覆结构的性能,采用硬模板法引入空腔来缓和硅的体积变化,实现提高容量以及循环稳定性双层目标(Electrochimica Acta,2019,295:75-81),如图2。   图1 碳基负极材料的结构设计形貌图   图2 硅基负极材料的结构设计示意图及电化学性能图   图3 硅碳复合结构设计形貌图及其电化学性能图   鉴于石墨材料高稳定性以及硅高比容量的特性,制备了膨胀石墨与硅的复合电极,硅纳米颗粒与石墨片层之间形成典型的三明治结构,改善了材料的电子传导特性,其表现出较为良好的性能(Carbon,2014,72:38-46)。在此基础上,对膨胀石墨酸化并加入硅烷偶联剂,实现硅纳米颗粒在石墨片层之间的均匀分散,制备的复合电极片在0.4 A/g电流密度下循环450次后依然有接近800 mAh/g的比容量(Journal of Power Sources, 2018, 385:84-90;专利授权号201610993853.9)。   以上工作得到了国家自然科学-山西省低碳联合重点基金以及山西省自然科学基金的支持。   原文链接: https://www.sciencedirect.com/science/article/pii/S0008622313007239 https://www.sciencedirect.com/science/article/pii/S0013468613016599 https://www.sciencedirect.com/science/article/abs/pii/S0008622314000633 https://www.sciencedirect.com/science/article/abs/pii/S037877531830257X https://www.sciencedirect.com/science/article/pii/S001346861832382X https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.201604918  

相关报告
  • 《山西煤化所在储能炭材料与器件方面取得系列进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-04-14
    • 近年来,在储能炭材料与器件研发方面,陈成猛研究员带领中国科学院山西煤化所709组取得了系列进展。团队解决了储能炭制备与应用中一系列科学难题,通过产学研用协同创新,突破石墨烯、电容炭和球形石墨等储能炭材料规模化生产核心技术,设计组装了超级电容器、锂离子电池和锂硫电池等储能器件,形成电动汽车、道钉灯和无人机等应用示范。通过打造“料-材-器-用”创新链,建立标准体系,促进了我国储能炭材料从“做好”向“用好”的跨越,为相关产业高质量发展贡献了力量。   从生物质和高分子等有机前驱体向无机炭材料转化的结构演变机制,及材料微观结构与电化学性能间的构效关系,是储能炭可控制备与定向应用的共性关键科学问题。团队阐释了淀粉分子交联过程中主/侧链竞争反应及碳碳键断裂和键合机制,为生物质向电容炭的可控转化提供了科学依据(ACS Sustainable Chem. Eng., 2019, 7, 14796-14804);研究了生物质和酚醛树脂基电容炭或硬炭在热还原时含氧官能团的演变路径,并与其超级电容器和锂离子电池等性能建立关联,为储能炭材料表面结构优化指明了方向(J. Energy Chem., 2020, JECHEM1233; Electrochim. Acta, 2020, 337, 135736-11; J. Energy Chem., 2018, 27, 439-446);阐释了磷酸活化对多孔炭表面磷掺杂的化学机制,并发现了其对电化学界面的稳定效应,为高电压电容炭的表面结构设计提供了新思路(ACS Appl. Mater. Interfaces, 2019, 11, 11421-11430; Electrochim. Acta, 2019, 318, 151-160; Electrochim. Acta, 2018, 266, 420-430.)。团队还就生物质基电容炭和酚醛树脂基碳气凝胶领域国内外科研进展和发展趋势进行了综述(J. Mater. Chem. A, 2019, 7, 16028-16045; Micropor. Mesopor. Mater., 2019, 279, 293-315.)。   在认知科学原理的基础上,突破储能炭材料产业化成套技术,是解决关键材料“卡脖子”问题的核心任务。陈成猛研究员带领年轻的科研团队,与晋能集团、美锦集团和山西三维等企业合作,先后攻克吨级氧化还原石墨烯、十吨级生物质基电容炭和吨级煤基球形石墨中试技术,打通全套工艺流程,研制配套关键装备,实现了相关材料从“样品”向“产品”的跨越。团队石墨烯中试制备技术通过山西科技成果鉴定,达到国际先进水平,产品已推广应用于中电科18所、航天科技42所、中国航发北京航材院等国内外100余家企业和研究机构。电容炭中试产品已顺利通过宁波中车、锦州凯美和上海奥威等国内电容器领军企业的应用评测,技术指标超越日本可乐丽YP-50F产品。近期,团队已与美锦能源合作启动年产500吨电容炭产业化一期工程,预计2021年产出批量化合格产品,届时将实现中国超级电容器产业关键材料的进口替代。   “料要成材,材要成器,器要可用”,是解决材料稳定化生产及应用匹配性等问题的有效策略。为服务储能炭材料精准高效研发,709组建成了国际先进的电化学储能器件组装与评测平台。依托自主炭材料,设计组装了超级电容器、锂离子电池和锂硫电池等先进储能器件,并形成道钉灯、电动汽车、无人机等应用示范。通过整合上下游资源,实现了从“单元配套”向“系统集成”的过渡,在反馈指导材料工艺优化的同时,实现了储能行业需求的精准对接。目前,团队已与宁波中车、宁德时代、沙特基础工业公司、厦门大学、中国科学院空天信息院和大连化物所等单位建立密切合作关系,正为军民领域部分型号开发储能解决方案。   团队在储能炭材料和器件方面形成了完善的知识产权布局,目前已申请PCT专利3项,国家发明专利45项、实用新型专利5项,其中已授权19项。团队积极推进标准化工作,共主持制订4项国际标准(IEC/TS 62607-6-13;IEC/TS 62607-6-20;2 项PWI项目)、国家标准2项(20160467-T-491;20100983-T-49),提升了煤化所在相关领域的话语权。团队还获得山西省自然科学一等奖、中国产学研合作创新成果一等奖、中国化工学会技术发明二等奖等荣誉。   习近平总书记指出,广大科技工作者要把论文写在祖国的大地上,把科技成果应用在实现现代化的伟大事业中。709团队将继续通过应用基础研究、高技术攻关和系统集成示范,致力于实现国产储能炭材料“说得清、做得好、用得上”的总体目标,为山西省争做能源革命排头兵行动助力,为推动中国储能产业高质量发展而奋斗。   上述工作获NSFC相关人才计划、面上项目及青年基金、中国科学院STS重点项目、山西省科技重大专项、太原科技局重大项目及国内外企业横向课题等10余个项目的联合资助。
  • 《硅碳负极材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-23
    • 被寄予厚望的下一代锂电池负极材料 硅碳负极材料的理论储锂容量最高可达到 4200mAh/g,比目前广泛使用的石墨类负极材料的 372mAh/g 高出 10 倍有余。其产业化后,将大大提升电池的容量,满足终端对电池容量日益增长的需求。 材料简介 硅碳负极材料是指将硅材料与不同结构的碳材料掺杂,以此显著提高负极材料的容量和电化学性能的材料。 硅是目前已知能用于负极材料理论比容最高的材料,可以达到目前主流的石墨负极的 10 倍以上,安全性高、资源储量丰富、制作成本低。而碳材料具有较高电导率,结构相对稳固,在循环过程中体积膨胀很小,通常在10% 以下,且还具有良好的柔韧性和润滑性。硅碳负极材料综合了二者优势,是未来负极材料的发展重点。     应用领域 消费电子终端产品电池、新能源汽车动力电池、储能… 发展历程   行业发展目标 《新材料产业发展指南》提出,要提升镍钴锰酸锂 / 镍钴铝酸锂、富锂锰基材料和硅碳复合负极材料安全性、性能一致性与循环寿命,开展高容量储氢材料、质子交换膜燃料电池及防护材料研究,实现先进电池材料合理配套。 《重点新材料首批次应用示范指导目录(2018 年版)》对硅碳负极材料和纳米硅碳负极材料提出了详细要求: 硅碳负极材料:低比容量(< 600mAh/g):压实密度> 1.5g/cm ,循环寿命> 500 圈(80%,1C);高比容量(> 600mAh/g):压实密度> 1.3g/cm ,循环寿命> 200 圈(80%,0.5C)。 纳米硅碳负极材料:低比容量(< 450mAh/g):压实密度> 1.7g/cm ,循环寿命> 1500 圈(80%,1C);高比容量(> 450mAh/g):压实密度> 1.6g/cm ,循环寿命> 800 圈(80%,0.5C)。 市场规模预测 据预测,到 2020 年硅碳负极材料渗透率将达到 15%,需求量将超过 4 万吨,市场空间为 50 亿元左右,同时市场集中度将非常高。   应用案例 3C 消费类电池: 日立麦克赛尔将硅碳负极材料用于智能手机、可穿戴设备等小型锂离子电池上。